#' @title Function to validate output from ssCTPR.pipeline with external phenotype
#' @param ls.pipeline A ssCTPR.pipeline object
#' @param test.bfile The (\href{https://www.cog-genomics.org/plink2/formats#bed}{PLINK bfile} for the test dataset
#' @param keep Participants to keep (see \code{\link{ssCTPR}} for more details)
#' @param remove Participants to remove
#' @param pheno A vector of phenotype OR a \code{data.frame} with 3 columns, the first 2 columns being headed "FID" and "IID", OR a filename for such a data.frame
#' @param covar A matrix of covariates OR a \code{data.frame} with 3 or more columns, the first 2 columns being headed "FID" and "IID", OR a filename for such a data.frame
#' @param validate.function Function with which to perform validation
#' @param trace Controls amount of output
#' @param destandardize Should coefficients from \code{\link{ssCTPR}} be
#' destandardized using test dataset standard deviations before being returned?
#' @param exclude.ambiguous Should ambiguous SNPs (C/G, A/T) be excluded?
#' @param cluster A \code{cluster} object from the \code{parallel} package for parallel computing
#' @param rematch Forces a rematching of the ls.pipline beta's with the new .bim file
#' @param ... parameters to pass to \code{\link{sd.bfile}}
#' @details Chooses the best \code{lambda} and \code{s} by validating
#' polygenic score against an external phenotype in the testing dataset.
#' If \code{pheno} is not specified, then the sixth column in the testing
#' dataset \href{https://www.cog-genomics.org/plink2/formats#fam}{.fam}\code{.fam} file is used.
#' @rdname validate
#' @export
validate.ssCTPR.pipeline <- function(ls.pipeline, test.bfile=NULL,
keep=NULL, remove=NULL,
pheno=NULL, covar=NULL,
validate.function=function(x, y)
cor(x, y, use="complete"),
trace=1,
destandardize=F,
exclude.ambiguous=T,
cluster=NULL,
rematch=!is.null(test.bfile), ...) {
stopifnot(class(ls.pipeline) == "ssCTPR.pipeline")
cat("YINGXI: line36\n")
lambda_cts <- as.numeric(names(ls.pipeline$beta))
results <- list(lambda=ls.pipeline$lambda, s=ls.pipeline$s, lambda_ctp=lambda_cts)
rematch <- rematch # Forces an evaluation at this point
if(is.null(test.bfile)) {
test.bfile <- ls.pipeline$test.bfile
keep.through.pheno <- !is.null(pheno) &&
((is.data.frame(pheno)) ||
(is.character(pheno) && length(pheno) == 1))
if(is.null(keep) && is.null(remove) && !keep.through.pheno)
keep <- ls.pipeline$keep.test
}
### Pheno & covar ###
parsed.test <- parseselect(test.bfile, keep=keep, remove=remove, export=TRUE)
phcovar <- parse.pheno.covar(pheno=pheno, covar=covar, parsed=parsed.test,
trace=trace)
parsed.test <- phcovar$parsed
pheno <- phcovar$pheno
covar <- phcovar$covar
### Destandardize ###
if(destandardize) {
if(ls.pipeline$destandardized) stop("beta in ls.pipeline already destandardized.")
sd <- sd.bfile(test.bfile, extract=ls.pipeline$test.extract,
keep=parsed.test$keep, trace=trace)
sd[sd <= 0] <- Inf # Do not want infinite beta's!
# if(ls.pipeline$traits>1){
# sd <- rep(sd,ls.pipeline$traits)
# }
for(ii in 1:length(ls.pipeline$beta)){
ls.pipeline$beta[[ii]] <- lapply(ls.pipeline$beta[[ii]], function(x) as.matrix(Matrix::Diagonal(x=1/sd) %*% x))
}
# ls.pipeline$beta <- lapply(ls.pipeline$beta,
# function(x) as.matrix(Matrix::Diagonal(x=1/sd) %*% x))
recal <- T
}
if(rematch) {
if(trace) cat("Coordinating ssCTPR output with test data...\n")
if(length(test.bfile) > 1) stop("Multiple 'test.bfile's not supported here.")
bim <- fread(paste0(test.bfile, ".bim"))
bim$V1 <- as.character(sub("^chr", "", bim$V1, ignore.case = T))
m <- matchpos(ls.pipeline$sumstats, bim, auto.detect.ref = F,
ref.chr = "V1", ref.snp="V2", ref.pos="V4", ref.alt="V5", ref.ref="V6",
rm.duplicates = T, exclude.ambiguous = exclude.ambiguous,
silent=T)
cat("YINGXI: line87\n")
beta <- list()
for(ii in 1:length(ls.pipeline$beta)){
beta[[as.character(ii)]] <- lapply(ls.pipeline$beta[[ii]], function(x) as.matrix(Matrix::Diagonal(x=m$rev) %*% x[m$order,]))
}
# beta <- lapply(ls.pipeline$beta, function(x)
# as.matrix(Matrix::Diagonal(x=m$rev) %*% x[m$order, ]))
if(trace) cat("Calculating PGS...\n")
cat("YINGXI: line98\n")
pgs <- list()
for(ii in 1:length(beta)){
pgs[[as.character(ii)]] <- lapply(beta[[ii]], function(x) pgs(bfile=test.bfile, weights = x,
extract=m$ref.extract, keep=parsed.test$keep,
cluster=cluster))
} #need to modify?? solved
# pgs <- lapply(beta, function(x) pgs(bfile=test.bfile, weights = x,
# extract=m$ref.extract,
# keep=parsed.test$keep,
# cluster=cluster,
# trace=trace-1))
cat("YINGXI: line110\n")
names(pgs) <- names(ls.pipeline$beta)
results <- c(results, list(pgs=pgs))
} else {
recal <- !identical(ls.pipeline$test.bfile, test.bfile) ||
!identical(parsed.test$keep, ls.pipeline$keep.test)
if(is.null(ls.pipeline$pgs) || recal) { ## need to modify? solved
if(trace) cat("Calculating PGS...\n")
cat("YINGXI: line119\n")
pgs <- list()
for(ii in 1:length(ls.pipeline$beta)){
pgs[[as.character(ii)]] <- lapply(ls.pipeline$beta[[ii]], function(x) pgs(bfile=test.bfile, weights = x,
extract=ls.pipeline$test.extract, keep=parsed.test$keep,
cluster=cluster))
}
# pgs <- lapply(ls.pipeline$beta, function(x) pgs(bfile=test.bfile,
# weights = x,
# extract=ls.pipeline$test.extract,
# keep=parsed.test$keep,
# cluster=cluster,
# trace=trace-1))
cat("YINGXI: line132\n")
names(pgs) <- names(ls.pipeline$beta)
results <- c(results, list(pgs=pgs))
} else {
# } else if(is.null(parsed.test$keep)) {
results <- c(results, list(pgs=ls.pipeline$pgs))
# } else {
# pgs <- ls.pipeline$pgs
# for(i in 1:length(pgs)) {
# pgs[[i]] <- pgs[[i]][parsed.test$keep, ]
# }
# results <- c(results, list(pgs=pgs))
}
beta <- ls.pipeline$beta
}
### Prepare PGS ###
lambdas <- rep(ls.pipeline$lambda, length(ls.pipeline$s))
ss <- rep(ls.pipeline$s, rep(length(ls.pipeline$lambda), length(ls.pipeline$s)))
PGS <- list()
for(ii in 1:length(results$pgs)){
PGS[[as.character(ii)]] <- do.call("cbind", results$pgs[[ii]])
}
names(PGS) <- names(results$pgs)
### pheno ###
if(sd(pheno, na.rm = TRUE) == 0 && ncol(PGS) > 1)
stop("There's no variation in phenotype")
### covar ###
if(!is.null(covar)) {
for(ii in length(PGS)){
for(i in 1:ncol(PGS[[ii]])) {
PGS[[ii]][,i] <- residuals(lm(PGS[[1]][,i] ~ ., data=covar, na.action = na.exclude))
}
}
stopifnot(nrow(covar) == parsed.test$n)
adj.pheno <- resid(lm(pheno ~ ., data=covar, na.action = na.exclude))
} else {
adj.pheno <- pheno
}
### Validate ###
cors <- list()
suppressWarnings(
for(ii in 1:length(PGS)){
cors[[as.character(ii)]] <- as.vector(
apply(PGS[[ii]], MARGIN = 2, FUN=validate.function, adj.pheno))
})
names(cors) <- names(PGS)
if(is.function(validate.function)) {
funcname <- deparse(substitute(validate.function))
} else if(is.character(validate.function)) {
funcname <- validate.function
} else {
stop("What is being passed to validate.function? I can't figure out.")
}
cors <- lapply(cors, function(x){
x[is.na(x)] <- -Inf
return(x)
})
max_cor <- sapply(cors, function(x) max(x))
best.ct.index <- which(max_cor == max(max_cor))[1]
best.ct <- as.numeric(names(cors)[best.ct.index])
best.index <- which(cors[[best.ct.index]]==max(max_cor))[1]
best.s <- ss[best.index]
best.lambda <- lambdas[best.index]
best.pgs <- PGS[[best.ct.index]][,best.index]
len.lambda <- length(ls.pipeline$lambda)
best.beta.s <- ceiling(best.index / len.lambda)
best.beta.lambda <- best.index %% len.lambda
best.beta.lambda[best.beta.lambda == 0] <- len.lambda
best.beta <- beta[[best.ct.index]][[best.beta.s]][,best.beta.lambda] ## need to modify? Solved
validation.table <- lapply(cors, function(x) data.frame(lambda=lambdas, s=ss, value=x))
#### Results table ####
if(is.null(phcovar$table)) {
if(is.null(parsed.test[['fam']])) parsed.test[['fam']] <- read.table2(parsed.test$famfile)
results.table <- parsed.test[['fam']][,1:2]
colnames(results.table) <- c("FID", "IID")
if(!is.null(parsed.test$keep)) results.table <- results.table[parsed.test$keep,]
results.table$pheno <- pheno
results.table$best.pgs <- best.pgs
} else {
results.table <- phcovar$table
results.table$best.pgs <- best.pgs[results.table$order]
}
results <- c(results, list(best.s=best.s,
best.ct=best.ct,
best.lambda=best.lambda,
best.pgs=best.pgs,
best.beta=best.beta,
traits=ls.pipeline$traits,
validation.table=validation.table,
validation.type=funcname,
pheno=pheno,
best.validation.result=max(max_cor),
results.table=results.table))
class(results) <- "validate.ssCTPR"
return(results)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.