spiec.easi: SPIEC-EASI pipeline

View source: R/spiec-easi.R

spiec.easiR Documentation

SPIEC-EASI pipeline

Description

Run the whole SPIEC-EASI pipeline, from data transformation, sparse inverse covariance estimation and model selection. Inputs are a non-normalized OTU table and pipeline options.

Usage

spiec.easi(data, ...)

## S3 method for class 'phyloseq'
spiec.easi(data, ...)

## S3 method for class 'otu_table'
spiec.easi(data, ...)

## Default S3 method:
spiec.easi(
  data,
  method = "glasso",
  sel.criterion = "stars",
  verbose = TRUE,
  pulsar.select = TRUE,
  pulsar.params = list(),
  icov.select = pulsar.select,
  icov.select.params = pulsar.params,
  lambda.log = TRUE,
  ...
)

Arguments

data

For a matrix, non-normalized count OTU/data table with samples on rows and features/OTUs in columns. Can also by phyloseq or otu_table object.

...

further arguments to sparseiCov / huge

method

estimation method to use as a character string. Currently either 'glasso' or 'mb' (meinshausen-buhlmann's neighborhood selection)

sel.criterion

character string specifying criterion/method for model selection. Accepts 'stars' [default], 'bstars' (Bounded StARS)

verbose

flag to show progress messages

pulsar.select

flag to perform model selection. Choices are TRUE/FALSE/'batch'

pulsar.params

list of further arguments to pulsar or batch.pulsar. See the documentation for pulsar.params.

icov.select

deprecated.

icov.select.params

deprecated.

lambda.log

should values of lambda be distributed logarithmically (TRUE) or linearly ()FALSE) between lamba.min and lambda.max?

See Also

multi.spiec.easi


zdk123/SpiecEasi documentation built on Oct. 20, 2023, 6:49 a.m.