CellScoring | R Documentation |
This function performs cell scoring on a Seurat object. It calculates scores for a given set of features and adds the scores as metadata to the Seurat object.
CellScoring(
srt,
features = NULL,
slot = "data",
assay = NULL,
split.by = NULL,
IDtype = "symbol",
species = "Homo_sapiens",
db = "GO_BP",
termnames = NULL,
db_update = FALSE,
db_version = "latest",
convert_species = TRUE,
Ensembl_version = 103,
mirror = NULL,
minGSSize = 10,
maxGSSize = 500,
method = "Seurat",
classification = TRUE,
name = "",
new_assay = FALSE,
BPPARAM = BiocParallel::bpparam(),
seed = 11,
...
)
srt |
A Seurat object |
features |
A named list of feature lists for scoring. If NULLL, |
slot |
The slot of the Seurat object to use for scoring. Defaults to "data". |
assay |
The assay of the Seurat object to use for scoring. Defaults to NULL, in which case the default assay of the object is used. |
split.by |
A cell metadata variable used for splitting the Seurat object into subsets and performing scoring on each subset. Defaults to NULL. |
IDtype |
A character vector specifying the type of gene IDs in the |
species |
A character vector specifying the species for which the analysis is performed. |
db |
A character vector specifying the name of the database to be used for enrichment analysis. |
termnames |
A vector of term names to be used from the database. Defaults to NULL, in which case all features from the database are used. |
db_update |
A logical value indicating whether the gene annotation databases should be forcefully updated. If set to FALSE, the function will attempt to load the cached databases instead. Default is FALSE. |
db_version |
A character vector specifying the version of the database to be used. This argument is ignored if |
convert_species |
A logical value indicating whether to use a species-converted database when the annotation is missing for the specified species. The default value is TRUE. |
Ensembl_version |
Ensembl database version. If NULL, use the current release version. |
mirror |
Specify an Ensembl mirror to connect to. The valid options here are 'www', 'uswest', 'useast', 'asia'. |
minGSSize |
A numeric value specifying the minimum size of a gene set to be considered in the enrichment analysis. |
maxGSSize |
A numeric value specifying the maximum size of a gene set to be considered in the enrichment analysis. |
method |
The method to use for scoring. Can be "Seurat", "AUCell", or "UCell". Defaults to "Seurat". |
classification |
Whether to perform classification based on the scores. Defaults to TRUE. |
name |
The name of the assay to store the scores in. Only used if new_assay is TRUE. Defaults to an empty string. |
new_assay |
Whether to create a new assay for storing the scores. Defaults to FALSE. |
BPPARAM |
The BiocParallel parameter object. Defaults to BiocParallel::bpparam(). |
seed |
The random seed for reproducibility. Defaults to 11. |
... |
Additional arguments to be passed to the scoring methods. |
PrepareDB
ListDB
data("pancreas_sub")
ccgenes <- CC_GenePrefetch("Mus_musculus")
pancreas_sub <- CellScoring(
srt = pancreas_sub,
features = list(S = ccgenes$S, G2M = ccgenes$G2M),
method = "Seurat", name = "CC"
)
CellDimPlot(pancreas_sub, "CC_classification")
FeatureDimPlot(pancreas_sub, "CC_G2M")
## Not run:
data("panc8_sub")
panc8_sub <- Integration_SCP(panc8_sub,
batch = "tech", integration_method = "Seurat"
)
CellDimPlot(panc8_sub, group.by = c("tech", "celltype"))
panc8_sub <- CellScoring(
srt = panc8_sub, slot = "data", assay = "RNA",
db = "GO_BP", species = "Homo_sapiens",
minGSSize = 10, maxGSSize = 100,
method = "Seurat", name = "GO", new_assay = TRUE
)
panc8_sub <- Integration_SCP(panc8_sub,
assay = "GO",
batch = "tech", integration_method = "Seurat"
)
CellDimPlot(panc8_sub, group.by = c("tech", "celltype"))
pancreas_sub <- CellScoring(
srt = pancreas_sub, slot = "data", assay = "RNA",
db = "GO_BP", species = "Mus_musculus",
termnames = panc8_sub[["GO"]]@meta.features[, "termnames"],
method = "Seurat", name = "GO", new_assay = TRUE
)
pancreas_sub <- Standard_SCP(pancreas_sub, assay = "GO")
CellDimPlot(pancreas_sub, "SubCellType")
pancreas_sub[["tech"]] <- "Mouse"
panc_merge <- Integration_SCP(
srtList = list(panc8_sub, pancreas_sub),
assay = "GO",
batch = "tech", integration_method = "Seurat"
)
CellDimPlot(panc_merge, group.by = c("tech", "celltype", "SubCellType", "Phase"))
genenames <- make.unique(capitalize(rownames(panc8_sub[["RNA"]]), force_tolower = TRUE))
panc8_sub <- RenameFeatures(panc8_sub, newnames = genenames, assay = "RNA")
head(rownames(panc8_sub))
panc_merge <- Integration_SCP(
srtList = list(panc8_sub, pancreas_sub),
assay = "RNA",
batch = "tech", integration_method = "Seurat"
)
CellDimPlot(panc_merge, group.by = c("tech", "celltype", "SubCellType", "Phase"))
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.