FeatureDimPlot | R Documentation |
Plotting cell points on a reduced 2D plane and coloring according to the values of the features.
FeatureDimPlot(
srt,
features,
reduction = NULL,
dims = c(1, 2),
split.by = NULL,
cells = NULL,
slot = "data",
assay = NULL,
show_stat = ifelse(identical(theme_use, "theme_blank"), FALSE, TRUE),
palette = ifelse(isTRUE(compare_features), "Set1", "Spectral"),
palcolor = NULL,
pt.size = NULL,
pt.alpha = 1,
bg_cutoff = 0,
bg_color = "grey80",
keep_scale = "feature",
lower_quantile = 0,
upper_quantile = 0.99,
lower_cutoff = NULL,
upper_cutoff = NULL,
add_density = FALSE,
density_color = "grey80",
density_filled = FALSE,
density_filled_palette = "Greys",
density_filled_palcolor = NULL,
cells.highlight = NULL,
cols.highlight = "black",
sizes.highlight = 1,
alpha.highlight = 1,
stroke.highlight = 0.5,
calculate_coexp = FALSE,
compare_features = FALSE,
color_blend_mode = c("blend", "average", "screen", "multiply"),
label = FALSE,
label.size = 4,
label.fg = "white",
label.bg = "black",
label.bg.r = 0.1,
label_insitu = FALSE,
label_repel = FALSE,
label_repulsion = 20,
label_point_size = 1,
label_point_color = "black",
label_segment_color = "black",
lineages = NULL,
lineages_trim = c(0.01, 0.99),
lineages_span = 0.75,
lineages_palette = "Dark2",
lineages_palcolor = NULL,
lineages_arrow = arrow(length = unit(0.1, "inches")),
lineages_linewidth = 1,
lineages_line_bg = "white",
lineages_line_bg_stroke = 0.5,
lineages_whiskers = FALSE,
lineages_whiskers_linewidth = 0.5,
lineages_whiskers_alpha = 0.5,
graph = NULL,
edge_size = c(0.05, 0.5),
edge_alpha = 0.1,
edge_color = "grey40",
hex = FALSE,
hex.linewidth = 0.5,
hex.color = "grey90",
hex.bins = 50,
hex.binwidth = NULL,
raster = NULL,
raster.dpi = c(512, 512),
aspect.ratio = 1,
title = NULL,
subtitle = NULL,
xlab = NULL,
ylab = NULL,
legend.position = "right",
legend.direction = "vertical",
theme_use = "theme_scp",
theme_args = list(),
combine = TRUE,
nrow = NULL,
ncol = NULL,
byrow = TRUE,
force = FALSE,
seed = 11
)
srt |
A Seurat object. |
features |
A character vector or a named list of features to plot. Features can be gene names in Assay or names of numeric columns in meta.data. |
reduction |
Which dimensionality reduction to use. If not specified, will use the reduction returned by |
dims |
Dimensions to plot, must be a two-length numeric vector specifying x- and y-dimensions. |
split.by |
Name of a column in meta.data to split plot by. |
cells |
Subset cells to plot. |
slot |
Which slot to pull expression data from? Default is |
assay |
Which assay to pull expression data from. If |
show_stat |
Whether to show statistical information on the plot. |
palette |
Name of a color palette name collected in SCP. |
palcolor |
Custom colors used to create a color palette. |
pt.size |
Point size for plotting. |
pt.alpha |
Point transparency. |
bg_cutoff |
Background cutoff. Points with feature values lower than the cutoff will be considered as background and will be colored with |
bg_color |
Color value for background points. |
keep_scale |
How to handle the color scale across multiple plots. Options are:
|
lower_quantile, upper_quantile, lower_cutoff, upper_cutoff |
Vector of minimum and maximum cutoff values or quantile values for each feature. |
add_density |
Whether to add a density layer on the plot. |
density_color |
Color of the density contours lines. |
density_filled |
Whether to add filled contour bands instead of contour lines. |
density_filled_palette |
Color palette used to fill contour bands. |
density_filled_palcolor |
Custom colors used to fill contour bands. |
cells.highlight |
A vector of cell names to highlight. |
cols.highlight |
Color used to highlight the cells. |
sizes.highlight |
Size of highlighted cells. |
alpha.highlight |
Transparency of highlighted cell points. |
stroke.highlight |
Border width of highlighted cell points. |
calculate_coexp |
Whether to calculate the co-expression value (geometric mean) of the features. |
compare_features |
Whether to show the values of multiple features on a single plot. |
color_blend_mode |
Blend mode to use when |
label |
Whether the feature name is labeled in the center of the location of cells wieh high expression. |
label.size |
Size of labels. |
label.fg |
Foreground color of label. |
label.bg |
Background color of label. |
label.bg.r |
Background ratio of label. |
label_insitu |
Whether the labels is feature names instead of numbers. Valid only when |
label_repel |
Logical value indicating whether the label is repel away from the center location. |
label_repulsion |
Force of repulsion between overlapping text labels. Defaults to 20. |
label_point_size |
Size of the center points. |
label_point_color |
Color of the center points |
label_segment_color |
Color of the line segment for labels. |
lineages |
Lineages/pseudotime to add to the plot. If specified, curves will be fitted using |
lineages_trim |
Trim the leading and the trailing data in the lineages. |
lineages_span |
The parameter α which controls the degree of smoothing in |
lineages_palette |
Color palette used for lineages. |
lineages_palcolor |
Custom colors used for lineages. |
lineages_arrow |
Set arrows of the lineages. See |
lineages_linewidth |
Width of fitted curve lines for lineages. |
lineages_line_bg |
Background color of curve lines for lineages. |
lineages_line_bg_stroke |
Border width of curve lines background. |
lineages_whiskers |
Whether to add whiskers for lineages. |
lineages_whiskers_linewidth |
Width of whiskers for lineages. |
lineages_whiskers_alpha |
Transparency of whiskers for lineages. |
graph |
Specify the graph name to add edges between cell neighbors to the plot. |
edge_size |
Size of edges. |
edge_alpha |
Transparency of edges. |
edge_color |
Color of edges. |
hex |
Whether to chane the plot type from point to the hexagonal bin. |
hex.linewidth |
Border width of hexagonal bins. |
hex.color |
Border color of hexagonal bins. |
hex.bins |
Number of hexagonal bins. |
hex.binwidth |
Hexagonal bin width. |
raster |
Convert points to raster format, default is NULL which automatically rasterizes if plotting more than 100,000 cells |
raster.dpi |
Pixel resolution for rasterized plots, passed to geom_scattermore(). Default is c(512, 512). |
aspect.ratio |
Aspect ratio of the panel. |
title |
The text for the title. |
subtitle |
The text for the subtitle for the plot which will be displayed below the title. |
xlab |
x-axis label. |
ylab |
y-axis label. |
legend.position |
The position of legends ("none", "left", "right", "bottom", "top"). |
legend.direction |
Layout of items in legends ("horizontal" or "vertical") |
theme_use |
Theme used. Can be a character string or a theme function. For example, |
theme_args |
Other arguments passed to the |
combine |
Combine plots into a single |
nrow |
Number of rows in the combined plot. |
ncol |
Number of columns in the combined plot. |
byrow |
Logical value indicating if the plots should be arrange by row (default) or by column. |
force |
Whether to force drawing regardless of the number of features greater than 100. |
seed |
Random seed set for reproducibility |
CellDimPlot
data("pancreas_sub")
FeatureDimPlot(pancreas_sub, features = "G2M_score", reduction = "UMAP")
FeatureDimPlot(pancreas_sub, features = "G2M_score", reduction = "UMAP", bg_cutoff = -Inf)
FeatureDimPlot(pancreas_sub, features = "G2M_score", reduction = "UMAP", theme_use = "theme_blank")
FeatureDimPlot(pancreas_sub, features = "G2M_score", reduction = "UMAP", theme_use = ggplot2::theme_classic, theme_args = list(base_size = 16))
FeatureDimPlot(pancreas_sub, features = "G2M_score", reduction = "UMAP") %>% panel_fix(height = 2, raster = TRUE, dpi = 30)
pancreas_sub <- Standard_SCP(pancreas_sub)
FeatureDimPlot(pancreas_sub, features = c("StandardPC_1", "StandardPC_2"), reduction = "UMAP", bg_cutoff = -Inf)
# Label and highlight cell points
FeatureDimPlot(pancreas_sub,
features = "Rbp4", reduction = "UMAP", label = TRUE,
cells.highlight = colnames(pancreas_sub)[pancreas_sub$SubCellType == "Delta"]
)
FeatureDimPlot(pancreas_sub,
features = "Rbp4", split.by = "Phase", reduction = "UMAP",
cells.highlight = TRUE, theme_use = "theme_blank"
)
# Add a density layer
FeatureDimPlot(pancreas_sub, features = "Rbp4", reduction = "UMAP", label = TRUE, add_density = TRUE)
FeatureDimPlot(pancreas_sub, features = "Rbp4", reduction = "UMAP", label = TRUE, add_density = TRUE, density_filled = TRUE)
# Chane the plot type from point to the hexagonal bin
FeatureDimPlot(pancreas_sub, features = "Rbp4", reduction = "UMAP", hex = TRUE)
FeatureDimPlot(pancreas_sub, features = "Rbp4", reduction = "UMAP", hex = TRUE, hex.bins = 20)
# Show lineages on the plot based on the pseudotime
pancreas_sub <- RunSlingshot(pancreas_sub, group.by = "SubCellType", reduction = "UMAP")
FeatureDimPlot(pancreas_sub, features = "Lineage3", reduction = "UMAP", lineages = "Lineage3")
FeatureDimPlot(pancreas_sub, features = "Lineage3", reduction = "UMAP", lineages = "Lineage3", lineages_whiskers = TRUE)
FeatureDimPlot(pancreas_sub, features = "Lineage3", reduction = "UMAP", lineages = "Lineage3", lineages_span = 0.1)
# Input a named feature list
markers <- list(
"Ductal" = c("Sox9", "Anxa2", "Bicc1"),
"EPs" = c("Neurog3", "Hes6"),
"Pre-endocrine" = c("Fev", "Neurod1"),
"Endocrine" = c("Rbp4", "Pyy"),
"Beta" = "Ins1", "Alpha" = "Gcg", "Delta" = "Sst", "Epsilon" = "Ghrl"
)
FeatureDimPlot(pancreas_sub,
features = markers, reduction = "UMAP",
theme_use = "theme_blank",
theme_args = list(plot.subtitle = ggplot2::element_text(size = 10), strip.text = ggplot2::element_text(size = 8))
)
# Plot multiple features with different scales
endocrine_markers <- c("Beta" = "Ins1", "Alpha" = "Gcg", "Delta" = "Sst", "Epsilon" = "Ghrl")
FeatureDimPlot(pancreas_sub, endocrine_markers, reduction = "UMAP")
FeatureDimPlot(pancreas_sub, endocrine_markers, reduction = "UMAP", lower_quantile = 0, upper_quantile = 0.8)
FeatureDimPlot(pancreas_sub, endocrine_markers, reduction = "UMAP", lower_cutoff = 1, upper_cutoff = 4)
FeatureDimPlot(pancreas_sub, endocrine_markers, reduction = "UMAP", bg_cutoff = 2, lower_cutoff = 2, upper_cutoff = 4)
FeatureDimPlot(pancreas_sub, endocrine_markers, reduction = "UMAP", keep_scale = "all")
FeatureDimPlot(pancreas_sub, c("Delta" = "Sst", "Epsilon" = "Ghrl"), split.by = "Phase", reduction = "UMAP", keep_scale = "feature")
# Plot multiple features on one picture
FeatureDimPlot(pancreas_sub,
features = endocrine_markers, pt.size = 1,
compare_features = TRUE, color_blend_mode = "blend",
label = TRUE, label_insitu = TRUE
)
FeatureDimPlot(pancreas_sub,
features = c("S_score", "G2M_score"), pt.size = 1, palcolor = c("red", "green"),
compare_features = TRUE, color_blend_mode = "blend", title = "blend",
label = TRUE, label_insitu = TRUE
)
FeatureDimPlot(pancreas_sub,
features = c("S_score", "G2M_score"), pt.size = 1, palcolor = c("red", "green"),
compare_features = TRUE, color_blend_mode = "average", title = "average",
label = TRUE, label_insitu = TRUE
)
FeatureDimPlot(pancreas_sub,
features = c("S_score", "G2M_score"), pt.size = 1, palcolor = c("red", "green"),
compare_features = TRUE, color_blend_mode = "screen", title = "screen",
label = TRUE, label_insitu = TRUE
)
FeatureDimPlot(pancreas_sub,
features = c("S_score", "G2M_score"), pt.size = 1, palcolor = c("red", "green"),
compare_features = TRUE, color_blend_mode = "multiply", title = "multiply",
label = TRUE, label_insitu = TRUE
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.