miRSM_SS | R Documentation |
Inferring sample-specific miRNA sponge modules
miRSM_SS(
Modulelist.all,
Modulelist.exceptk,
sim.cutoff = 0.8,
sim.method = "Simpson"
)
Modulelist.all |
List object, modules using all of samples. |
Modulelist.exceptk |
List object, modules using all of samples excepting sample k. |
sim.cutoff |
Similarity cutoff between modules, the interval is [0 1]. |
sim.method |
Methods for calculating similatiry between two modules, select one of three methods (Simpson, Jaccard and Lin). Default method is Simpson. |
A list of sample-specific miRNA sponge modules
Junpeng Zhang (https://www.researchgate.net/profile/Junpeng-Zhang-2)
data(BRCASampleData)
nsamples <- 3
modulegenes_all <- module_igraph(ceRExp[, 151:300], mRExp[, 151:300])
modulegenes_exceptk <- lapply(seq(nsamples), function(i)
module_WGCNA(ceRExp[-i, seq(150)],
mRExp[-i, seq(150)]))
miRSM_SRVC_all <- miRSM(miRExp, ceRExp[, 151:300], mRExp[, 151:300],
miRTarget, modulegenes_all,
method = "SRVC", SMC.cutoff = 0.01,
RV_method = "RV")
miRSM_SRVC_exceptk <- lapply(seq(nsamples), function(i) miRSM(miRExp[-i, ],
ceRExp[-i, seq(150)], mRExp[-i, seq(150)],
miRTarget, modulegenes_exceptk[[i]],
method = "SRVC",
SMC.cutoff = 0.01, RV_method = "RV"))
Modulegenes_all <- miRSM_SRVC_all[[2]]
Modulegenes_exceptk <- lapply(seq(nsamples), function(i)
miRSM_SRVC_exceptk[[i]][[2]])
Modules_SS <- miRSM_SS(Modulegenes_all, Modulegenes_exceptk)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.