spiec.easi | R Documentation |
Run the whole SPIEC-EASI pipeline, from data transformation, sparse inverse covariance estimation and model selection. Inputs are a non-normalized OTU table and pipeline options.
spiec.easi(data, ...)
## S3 method for class 'phyloseq'
spiec.easi(data, ...)
## S3 method for class 'otu_table'
spiec.easi(data, ...)
## Default S3 method:
spiec.easi(
data,
method = "glasso",
sel.criterion = "stars",
verbose = TRUE,
pulsar.select = TRUE,
pulsar.params = list(),
icov.select = pulsar.select,
icov.select.params = pulsar.params,
lambda.log = TRUE,
...
)
data |
For a matrix, non-normalized count OTU/data table with samples on rows and features/OTUs in columns. Can also by phyloseq or otu_table object. |
... |
further arguments to |
method |
estimation method to use as a character string. Currently either 'glasso' or 'mb' (meinshausen-buhlmann's neighborhood selection) |
sel.criterion |
character string specifying criterion/method for model selection. Accepts 'stars' [default], 'bstars' (Bounded StARS) |
verbose |
flag to show progress messages |
pulsar.select |
flag to perform model selection. Choices are TRUE/FALSE/'batch' |
pulsar.params |
list of further arguments to |
icov.select |
deprecated. |
icov.select.params |
deprecated. |
lambda.log |
should values of lambda be distributed logarithmically ( |
multi.spiec.easi
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.