InvGamma | R Documentation |
Density, distribution function and random generation for the inverse-gamma distribution.
dinvgamma(x, alpha, beta = 1, log = FALSE)
pinvgamma(q, alpha, beta = 1, lower.tail = TRUE, log.p = FALSE)
qinvgamma(p, alpha, beta = 1, lower.tail = TRUE, log.p = FALSE)
rinvgamma(n, alpha, beta = 1)
x , q |
vector of quantiles. |
alpha , beta |
positive valued shape and scale parameters. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. If |
Probability mass function
f(x) = \frac{\beta^\alpha x^{-\alpha-1} \exp(-\frac{\beta}{x})}{\Gamma(\alpha)}
Cumulative distribution function
F(x) = \frac{\gamma(\alpha, \frac{\beta}{x})}{\Gamma(\alpha)}
Witkovsky, V. (2001). Computing the distribution of a linear combination of inverted gamma variables. Kybernetika 37(1), 79-90.
Leemis, L.M. and McQueston, L.T. (2008). Univariate Distribution Relationships. American Statistician 62(1): 45-53.
GammaDist
x <- rinvgamma(1e5, 20, 3)
hist(x, 100, freq = FALSE)
curve(dinvgamma(x, 20, 3), 0, 1, col = "red", add = TRUE, n = 5000)
hist(pinvgamma(x, 20, 3))
plot(ecdf(x))
curve(pinvgamma(x, 20, 3), 0, 1, col = "red", lwd = 2, add = TRUE, n = 5000)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.