Kumaraswamy | R Documentation |
Density, distribution function, quantile function and random generation for the Kumaraswamy distribution.
dkumar(x, a = 1, b = 1, log = FALSE)
pkumar(q, a = 1, b = 1, lower.tail = TRUE, log.p = FALSE)
qkumar(p, a = 1, b = 1, lower.tail = TRUE, log.p = FALSE)
rkumar(n, a = 1, b = 1)
x , q |
vector of quantiles. |
a , b |
positive valued parameters. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. If |
Probability density function
f(x) = abx^{a-1} (1-x^a)^{b-1}
Cumulative distribution function
F(x) = 1-(1-x^a)^b
Quantile function
F^{-1}(p) = 1-(1-p^{1/b})^{1/a}
Jones, M. C. (2009). Kumaraswamy's distribution: A beta-type distribution with some tractability advantages. Statistical Methodology, 6, 70-81.
Cordeiro, G.M. and de Castro, M. (2009). A new family of generalized distributions. Journal of Statistical Computation & Simulation, 1-17.
x <- rkumar(1e5, 5, 16)
hist(x, 100, freq = FALSE)
curve(dkumar(x, 5, 16), 0, 1, col = "red", add = TRUE)
hist(pkumar(x, 5, 16))
plot(ecdf(x))
curve(pkumar(x, 5, 16), 0, 1, col = "red", lwd = 2, add = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.