Laplace | R Documentation |
Density, distribution function, quantile function and random generation for the Laplace distribution.
dlaplace(x, mu = 0, sigma = 1, log = FALSE)
plaplace(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qlaplace(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rlaplace(n, mu = 0, sigma = 1)
x , q |
vector of quantiles. |
mu , sigma |
location and scale parameters. Scale must be positive. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. If |
Probability density function
f(x) = \frac{1}{2\sigma} \exp\left(-\left|\frac{x-\mu}{\sigma}\right|\right)
Cumulative distribution function
F(x) = \left\{\begin{array}{ll}
\frac{1}{2} \exp\left(\frac{x-\mu}{\sigma}\right) & x < \mu \\
1 - \frac{1}{2} \exp\left(\frac{x-\mu}{\sigma}\right) & x \geq \mu
\end{array}\right.
Quantile function
F^{-1}(p) = \left\{\begin{array}{ll}
\mu + \sigma \log(2p) & p < 0.5 \\
\mu - \sigma \log(2(1-p)) & p \geq 0.5
\end{array}\right.
Krishnamoorthy, K. (2006). Handbook of Statistical Distributions with Applications. Chapman & Hall/CRC
Forbes, C., Evans, M. Hastings, N., & Peacock, B. (2011). Statistical Distributions. John Wiley & Sons.
x <- rlaplace(1e5, 5, 16)
hist(x, 100, freq = FALSE)
curve(dlaplace(x, 5, 16), -200, 200, n = 500, col = "red", add = TRUE)
hist(plaplace(x, 5, 16))
plot(ecdf(x))
curve(plaplace(x, 5, 16), -200, 200, n = 500, col = "red", lwd = 2, add = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.