Triangular | R Documentation |
Density, distribution function, quantile function and random generation for the triangular distribution.
dtriang(x, a = -1, b = 1, c = (a + b)/2, log = FALSE)
ptriang(q, a = -1, b = 1, c = (a + b)/2, lower.tail = TRUE, log.p = FALSE)
qtriang(p, a = -1, b = 1, c = (a + b)/2, lower.tail = TRUE, log.p = FALSE)
rtriang(n, a = -1, b = 1, c = (a + b)/2)
x , q |
vector of quantiles. |
a , b , c |
minimum, maximum and mode of the distribution. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. If |
Probability density function
f(x) = \left\{\begin{array}{ll}
\frac{2(x-a)}{(b-a)(c-a)} & x < c \\
\frac{2}{b-a} & x = c \\
\frac{2(b-x)}{(b-a)(b-c)} & x > c
\end{array}\right.
Cumulative distribution function
F(x) = \left\{\begin{array}{ll}
\frac{(x-a)^2}{(b-a)(c-a)} & x \leq c \\
1 - \frac{(b-x)^2}{(b-a)(b-c)} & x > c
\end{array}\right.
Quantile function
F^{-1}(p) = \left\{\begin{array}{ll}
a + \sqrt{p \times (b-a)(c-a)} & p \leq \frac{c-a}{b-a} \\
b - \sqrt{(1-p)(b-a)(b-c)} & p > \frac{c-a}{b-a}
\end{array}\right.
For random generation MINMAX method described by Stein and Keblis (2009) is used.
Forbes, C., Evans, M. Hastings, N., & Peacock, B. (2011). Statistical Distributions. John Wiley & Sons.
Stein, W. E., & Keblis, M. F. (2009). A new method to simulate the triangular distribution. Mathematical and computer modelling, 49(5), 1143-1147.
x <- rtriang(1e5, 5, 7, 6)
hist(x, 100, freq = FALSE)
curve(dtriang(x, 5, 7, 6), 3, 10, n = 500, col = "red", add = TRUE)
hist(ptriang(x, 5, 7, 6))
plot(ecdf(x))
curve(ptriang(x, 5, 7, 6), 3, 10, n = 500, col = "red", lwd = 2, add = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.