Description Usage Arguments Details Value Author(s) References Examples
simplelme makes inference to a one-way Linear Mixed Effects model (assumes indepedent gaussian effect).
1 2 |
dat |
Dataset with responses, categorize (group), covariates and random effects variables. List elements: Y is Response variable, F is Categorize (name of group, X is Covariates belonging to fixed effects, Z is Covariates belonging to random effects. |
levelnames |
Name of categorized levels. |
phi0 |
Startvalues of the 'phi'-parameter in the EM-algorithm. Here, 'phi' is the variance parameter of the random effect levels. |
eps |
Criterion of euclidean distance for stopping EM-algorithm. |
minIT |
Minimum number of iterations in the EM-algorithm. |
alpha |
Specifies (1-alpha/2) confidence interval of parameters. |
The Maximum Likelihood are used to estimate the model using the EM-algorithm. The model assumes gaussian noise with different variance paramater for each group (heterogenous variance structure) and a gaussian independent random intercept effect with constant variance parameter.
The confidence intervals are based on normal-approximated large sample intervals. Details of the EM-algorithm and confidence intervals are found in Masterthesis of Oyvind Bleka.
Model: One individual 'j' belongs to a category-level 'i'. Let 'y_ij' be the response, 'X_ij' the covariate-vector for fixed effects, 'mu_i' is random level effect for category-level 'i'. Then the model is given as 'y_ij=X_ij*beta+mu_i + epsilon_ij'. Here, Cov(epsilon_ij,epsilon_ik)=gamma_i for j=k0 for j!=k and Cov(mu_i,mu_l)={phi for i=l}{0 for i!=l}.
Note that simplelme handels only a special case of LME models which may be fitted using genlme.
Fitted simple one-way LME model object
est |
Maximum Likelihood estimatation of LME model |
OLSest |
Ordinary least squares estimatation of LME model |
pred |
E_mu_Y: Mean of random effects. Var_mu_Y: Variance of random effects. |
levelnames |
Categorized levelnames. |
n_i |
Datasize within each categorized levels. |
loglik |
Maximized likelihood value. |
iter |
Number of iterations in the EM-algorithm. |
timeusage |
Time spent for running function. |
modelfit |
AIC and BIC of fitted model. |
CI |
Confidence interval of parameters. |
Oyvind Bleka <Oyvind.Bleka.at.fhi.no>
Master Thesis Oyvind Bleka
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | ## Not run:
set.seed(1)
require(biglme)
require(geoR)
Xsim <- function(p,n_i) {
Xtype = sample(1:3,p,replace=TRUE)
Xant = rep(0,3)
for(i in 1:3) Xant[i] = sum(Xtype==i)
X=NULL
I=length(n_i)
n=sum(n_i)
cn_i = c(0,cumsum(n_i))+1 #startindex for each levels
if(p) { #if having any covariables
for(i in 1:I) { #for each levels
Xi = matrix(NA,nrow=n_i[i],ncol=p)
Xi[,which(Xtype==1)] = matrix(rnorm(n_i[i]*Xant[1],5,3),nrow=n_i[i],ncol=Xant[1])
Xi[,which(Xtype==2)] = matrix(rpois(n_i[i]*Xant[2],3),nrow=n_i[i],ncol=Xant[2])
Xi[,which(Xtype==3)] = matrix(rbinom(n_i[i]*Xant[3],1,0.3),nrow=n_i[i],ncol=Xant[3])
if(i==1) { X = Xi
} else { X = rbind(X,Xi) } #just add up the matrix
}
}
return(X)
}
I = 30 #number of effectlevels:
levelnames = paste("place",1:I,sep="") #name of levels
nlvl = 1000 #expected number of data per level
n=I*nlvl #total number of data
n_i = c(rmultinom(1,n,runif(I,0.3,0.7))) #gen number of observations at each level
p = 4 #number of covariates
true=list(beta = rnorm(p,3,1), phi = c(3), gamma = rnorm(I,40,1)) #true parameters
X = cbind(1,Xsim(p-1,n_i)) #simulate covariate data
#Covariance Prior to level effects:
invGam = function(phi) {
diag(rep(1,I))/phi
} #invGam(true$phi)
#Specify logarithm of determinant of inverse Covariance matrix as a function of phi:
logdetG = function(phi) {
-I*phi
}
modelM1=list(G=invGam,ldetG=logdetG)
Z = matrix(1,ncol=1,nrow=n) #one intercept effect for each level
designM = list(X=X,Z=Z)
dat <- genlmesim(model=modelM1,true,designM,n_i,levelnames)
lmefitM1 = simplelme(dat,levelnames,phi0=8,eps=10^-5)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.