Nothing
#' @encoding UTF-8
#' @title Functions for plotting a partitioned matrix (representing the network)
#'
#' @description
#' The main function \code{plot.mat} or \code{plotMat} plots a (optionally partitioned) matrix.
#' If the matrix is partitioned, the rows and columns of the matrix are rearranged according to the partitions.
#' Other functions are only wrappers for \code{plot.mat} or \code{plotMat} for convenience when plotting the results of the corresponding functions.
#' The \code{plotMatNm} plots two matrices based on M, normalized by rows and columns, next to each other. The \code{plot.array} or \code{plotArray} plots an array. \code{plot.mat.nm} has been replaced by \code{plotMatNm}.
#'
#' @param x A result from a corresponding function or a matrix or similar object representing a network.
#' @param M A matrix or similar object representing a network - either \code{x} or \code{M} must be supplied - both are here to make the code compatible with generic and with older functions.
#' @param clu A partition. Each unique value represents one cluster. If the network is one-mode,
#' then this should be a vector, else a list of vectors, one for each mode.
#' @param ylab Label for y axis.
#' @param xlab Label for x axis.
#' @param main Main title.
#' @param print.val Should the values be printed in the matrix.
#' @param print.0 If \code{print.val = TRUE} Should the 0s be printed in the matrix.
#' @param plot.legend Should the legend for shades be plotted.
#' @param print.legend.val Should the values be printed in the legend.
#' @param print.digits.legend The number of digits that should appear in the legend.
#' @param print.digits.cells The number of digits that should appear in the cells (of the matrix and/or legend).
#' @param print.cells.mf If not \code{NULL}, the above argument is ignored, the cell values are printed as the cell are multiplied by this factor and rounded.
#' @param outer.title Should the title be printed on the 'inner' or 'outer' margin of the plot, default is 'inner' margin.
#' @param title.line The line (from the top) where the title should be printed. The suitable values depend heavily on the displayed type.
#' @param mar A numerical vector of the form \code{c(bottom, left, top, right)} which gives the lines of margin to be specified on the four sides of the plot.
#' The R default for ordinary plots is \code{c(5, 4, 4, 2) + 0.1}, while this function default is \code{c(0.5, 7, 8.5, 0) + 0.1}.
#' @param cex.val The size of the values printed. The default is \code{10 / 'number of units'}.
#' @param val.y.coor.cor Correction for centering the values in the squares in y direction.
#' @param val.x.coor.cor Correction for centering the values in the squares in x direction.
#' @param cex.legend Size of the text in the legend.
#' @param legend.title The title of the legend.
#' @param cex.axes Size of the characters in axes. Default makes the cex so small that all categories can be printed.
#' @param print.axes.val Should the axes values be printed. Default prints each axis if \code{rownames} or \code{colnames} is not \code{NULL}.
#' @param print.x.axis.val Should the x axis values be printed. Default prints each axis if \code{rownames} or \code{colnames} is not \code{NULL}.
#' @param print.y.axis.val Should the y axis values be printed. Default prints each axis if \code{rownames} or \code{colnames} is not \code{NULL}.
#' @param x.axis.val.pos The x coordinate of the y axis values.
#' @param y.axis.val.pos The y coordinate of the x axis values.
#' @param cex.main Size of the text in the main title.
#' @param cex.lab Size of the text in matrix.
#' @param yaxis.line The position of the y axis (the argument 'line').
#' @param xaxis.line The position of the x axis (the argument 'line').
#' @param legend.left How much left should the legend be from the matrix.
#' @param legend.up How much up should the legend be from the matrix.
#' @param legend.size Relative legend size.
#' @param legend.text.hor.pos Horizontal position of the legend text (bottom) - 0 = bottom, 0.5 = middle,...
#' @param par.line.width The width of the line that separates the partitions.
#' @param par.line.col The color of the line that separates the partitions.
#' @param IM.dens The density of shading lines in each block.
#' @param IM The image (as obtained with \code{critFunC}) of the blockmodel. \code{dens.leg} is used to translate this image into \code{IM.dens}.
#' @param wnet Specifies which matrix (if more) should be plotted - used if \code{M} is an array.
#' @param wIM Specifies which \code{IM} (if more) should be used for plotting. The default value is set to \code{wnet}) - used if \code{IM} is an array.
#' @param use.IM Specifies if \code{IM} should be used for plotting.
#' @param dens.leg It is used to translate the \code{IM} into \code{IM.dens}.
#' @param blackdens At which density should the values on dark colors of lines be printed in white.
#' @param plotLines Should the lines in the matrix be printed. The default value is set to \code{FALSE}, best set to \code{TRUE} for very small networks.
#' @param frameMatrix Should the matrix be framed (if \code{plotLines} is \code{FALSE}). The default value is set to \code{TRUE}.
#' @param x0ParLine Coordinates for lines separating clusters.
#' @param x1ParLine Coordinates for lines separating clusters.
#' @param y0ParLine Coordinates for lines separating clusters.
#' @param y1ParLine Coordinates for lines separating clusters.
#' @param colByUnits Coloring units. It should be a vector of unit length.
#' @param colByRow Coloring units by rows. It should be a vector of unit length.
#' @param colByCol Coloring units by columns. It should be a vector of unit length.
#' @param mulCol Multiply color when joining with row, column. Only used when when \code{colByUnits} is not \code{NULL}.
#' @param joinColOperator Function to join \code{colByRow} and \code{colByCol}. The default value is set to \code{"+"}.
#' @param colTies If \code{TRUE}, ties are colored, if \code{FALSE}, 0-ties are colored.
#' @param maxValPlot The value to use as a maximum when computing colors (ties with maximal positive value are plotted as black).
#' @param printMultipliedMessage Should the message '* all values in cells were multiplied by' be printed on the plot. The default value is set to \code{TRUE}.
#' @param replaceNAdiagWith0 If \code{replaceNAdiagWith0 = TRUE} Should the \code{NA} values on the diagonal of a matrix be replaced with 0s.
#' @param title.row Title for the row-normalized matrix in nm version
#' @param title.col Title for the column-normalized matrix in nm version
#' @param par.set A list of possible plotting parameters (to \code{par}) to be used in nm version
#' @param which Which (if there are more than one) of optimal solutions to plot.
#' @param colLabels Should the labels of units be colored. If \code{FALSE}, these are not collored, if \code{TRUE}, they are colored with colors of clusters as defined by palette.
#' This can be aslo a vector of colors (or integers) for one-mode networks or a list of two such vectors for two-mode networks.
#' @param \dots Aditional arguments to \code{plot.default} for \code{plotMat} and also to \code{plotMat} for other functions.
#'
#' @return The functions are used for their side effect - plotting.
#'
#' @references \enc{Žiberna, A.}{Ziberna, A.} (2007). Generalized Blockmodeling of Valued Networks. Social Networks, 29(1), 105-126. doi: 10.1016/j.socnet.2006.04.002
#'
#' \enc{Žiberna, A.}{Ziberna, A.} (2008). Direct and indirect approaches to blockmodeling of valued networks in terms of regular equivalence. Journal of Mathematical Sociology, 32(1), 57-84. doi: 10.1080/00222500701790207
#'
#' @author \enc{Aleš Žiberna}{Ales Ziberna}
#' @seealso \code{\link{critFunC}}, \code{\link{optRandomParC}}
#' @keywords graphs hplot
#'
#' @examples
#' # Generation of the network
#' n <- 20
#' net <- matrix(NA, ncol = n, nrow = n)
#' clu <- rep(1:2, times = c(5, 15))
#' tclu <- table(clu)
#' net[clu == 1, clu == 1] <- rnorm(n = tclu[1] * tclu[1], mean = 0, sd = 1)
#' net[clu == 1, clu == 2] <- rnorm(n = tclu[1] * tclu[2], mean = 4, sd = 1)
#' net[clu == 2, clu == 1] <- rnorm(n = tclu[2] * tclu[1], mean = 0, sd = 1)
#' net[clu == 2, clu == 2] <- rnorm(n = tclu[2] * tclu[2], mean = 0, sd = 1)
#'
#' # Ploting the network
#' plotMat(M = net, clu = clu, print.digits.cells = 3)
#' class(net) <- "mat"
#' plot(net, clu = clu)
#' # See corresponding functions for examples for other ploting
#' # functions
#' # presented, that are essentially only the wrappers for "plot.max"
#' @import Matrix
#' @import methods
#' @importFrom grDevices gray
#' @importFrom graphics mtext par plot.default rect segments text title
#'
#' @export
plotMat <-
function(
x=M, #x should be a matrix or similar object
M=x, #M should be a matrix or similar object - both (x and M) are here to make the code compatible with generic plot and with older versions of plot.mat and possbily some other functions in the package
clu=NULL, #partition
ylab="",
xlab="",
main=NULL,
print.val=!length(table(M))<=2, #should the values be printed inside the cells
print.0=FALSE, #should the values equal to 0 be printed inside the cells, only used if 'print.val == TRUE'
plot.legend=!print.val&&!length(table(M))<=2, #should the legend for the colors be ploted
print.legend.val="out", #where should the values for the legend be printed: 'out' - outside the cells (bellow), 'in' - inside the cells, 'both' - inside and outside the cells
print.digits.legend=2, #the number of digits that should appear in the legend
print.digits.cells=2, #the number of digits that should appear in the cells (of the matrix and/or legend)
print.cells.mf=NULL, #if not null, the above argument is igonred, the cell values are printed as the cell are multiplied by this factor and rounded
outer.title=FALSE, #should the title be printed on the 'inner' or 'outer' plot, default is 'inner' if legend is ploted and 'outer' otherwise
title.line= ifelse(outer.title,-1.5,7), #the line (from the top) where the title should be printed
mar= c(0.5, 7, 8.5, 0)+0.1, #A numerical vector of the form 'c(bottom, left, top, right)' which gives the lines of margin to be specified on the four sides of the plot. The default is 'c(5, 4, 4, 2) + 0.1'.
cex.val="default", #size of the values printed
val.y.coor.cor = 0, #correction for centering the values in the sqares in y direction
val.x.coor.cor = 0, #correction for centering the values in the sqares in x direction
cex.legend=1, #size of the text in the legend,
legend.title="Legend", #the title of the legend
cex.axes="default", #size of the characters in axes, 'default' makes the cex so small that all categories can be printed
print.axes.val=NULL, #should the axes values be printed, 'default' prints each axis if 'rownames' or 'colnames' is not 'NULL'
print.x.axis.val=!is.null(colnames(M)), #should the x axis values be printed, 'default' prints each axis if 'rownames' or 'colnames' is not 'NULL'
print.y.axis.val=!is.null(rownames(M)), #should the y axis values be printed, 'default' prints each axis if 'rownames' or 'colnames' is not 'NULL'
x.axis.val.pos = 1.01, #y coordiante of the x axis values
y.axis.val.pos = -0.01, #x coordiante of the y axis values
cex.main=par()$cex.main,
cex.lab=par()$cex.lab,
yaxis.line=-1.5, #the position of the y axis (the argument 'line')
xaxis.line=-1, #the position of the x axis (the argument 'line')
legend.left=0.4,#how much left should the legend be from the matrix
legend.up=0.03, #how much left should the legend be from the matrix
legend.size=1/min(dim(M)), #relative legend size
legend.text.hor.pos=0.5, #horizontal position of the legend text (bottom) - 0 = bottom, 0.5 = middle,...
par.line.width = 3, #the width of the line that seperates the partitions
par.line.col = "blue", #the color of the line that seperates the partitions
IM.dens= NULL,
IM= NULL, #Image used for ploting (shaded lines)
wnet=NULL, #which net (if more) should be ploted - used if M is an array
wIM=NULL, #which IM (if more) should be used for ploting (defualt = wnet) - used if IM is an array
use.IM=length(dim(IM))==length(dim(M))|!is.null(wIM), #should IM be used for ploting?
dens.leg=c(null=100, nul=100),
blackdens=70,
plotLines = FALSE, #Should the lines in the matrix be printed (best set to FALSE for larger networks)
frameMatrix=TRUE, #Should the matrix be framed (if plotLines is FALSE)
x0ParLine=-0.1, #x coordinates for lines between row clusters
x1ParLine=1, #x coordinates for lines between row clusters
y0ParLine=0, #y coordinates for lines between col clusters
y1ParLine=1.1, #y coordinates for lines between col clusters
colByUnits=NULL, #a vector (of 0s and 1s) indicating whether ties of a unit should be marked with a diferent (nonblack) color - only used for binary networks
colByRow=NULL, #a vector (of 0s and 1s) indicating whether outgoing ties of a unit should be marked with a different (nonblack) color - only used for binary networks
colByCol=NULL, #a vector (of 0s and 1s) indicating whether incoming ties of a unit should be marked with a different (nonblack) color - only used for binary networks
mulCol = 2,
joinColOperator = "+",
colTies=FALSE,
maxValPlot=NULL, # maximal value used for determining the color of cells in the plot. This value and all higher (in absolute terms) will produce a pure black/red color
printMultipliedMessage = TRUE, # shold mutiplication message be printed when values were the printed tie values are multiplied
replaceNAdiagWith0=TRUE, #Should the diagonal with only NAs be replace by 0s?
colLabels=FALSE, # Should the labels of units be colored. If FALSE, these are not collored, if TRUE, they are colored with colors of clusters as defined by palette. This can be aslo a vector of colors (or integers) for one-mode networks or a list of two such vectors for two-mode networks.
... #aditional arguments to plot.default
){
old.mar<-par("mar")
if(length(dim(IM))>length(dim(IM))&use.IM){
if(is.null(wIM))wIM<-wnet
if(is.null(wIM)) wIM<-1
if(length(dim(IM))==3) {
IM<-IM[wIM,,]
} else{
warning("IM will not be used for plotting. Cannot be sure how to extract the appropirate part!")
use.IM<-FALSE
}
}
tempClu<-clu
if(length(dim(M))>2){
if(!is.null(wnet)){
relDim<-which.min(dim(M))
if(relDim==1){
M<-M[wnet,,]
}else if(relDim==3){
M<-M[,,wnet]
}else stop("More than 2 dimensions where relation dimension can not be determined")
}else{
plot.array(M = M,
clu=tempClu, #partition
ylab=ylab,
xlab=xlab,
main.title=main,main.title.line=-2,
print.val=print.val, #should the values be printed inside the cells
print.0=print.0, #should the values equal to 0 be printed inside the cells, only used if 'print.val == TRUE'
plot.legend=plot.legend, #should the legend for the colors be ploted
print.legend.val=print.legend.val, #where should the values for the legend be printed: 'out' - outside the cells (bellow), 'in' - inside the cells, 'both' - inside and outside the cells
print.digits.legend=print.digits.legend, #the number of digits that should appear in the legend
print.digits.cells=print.digits.cells, #the number of digits that should appear in the cells (of the matrix and/or legend)
print.cells.mf=print.cells.mf, #if not null, the above argument is igonred, the cell values are printed as the cell are multiplied by this factor and rounded
outer.title=outer.title, #should the title be printed on the 'inner' or 'outer' plot, default is 'inner' if legend is ploted and 'outer' otherwise
title.line= title.line, #the line (from the top) where the title should be printed
mar= mar, #A numerical vector of the form 'c(bottom, left, top, right)' which gives the lines of margin to be specified on the four sides of the plot. The default is 'c(5, 4, 4, 2) + 0.1'.
cex.val=cex.val, #size of the values printed
val.y.coor.cor = val.y.coor.cor, #correction for centering the values in the sqares in y direction
val.x.coor.cor = val.x.coor.cor, #correction for centering the values in the sqares in x direction
cex.legend=cex.legend, #size of the text in the legend,
legend.title=legend.title, #the title of the legend
cex.axes=cex.axes, #size of the characters in axes, 'default' makes the cex so small that all categories can be printed
print.axes.val=print.axes.val, #should the axes values be printed, 'default' prints each axis if 'rownames' or 'colnames' is not 'NULL'
print.x.axis.val=print.x.axis.val, #should the x axis values be printed, 'default' prints each axis if 'rownames' or 'colnames' is not 'NULL'
print.y.axis.val=print.y.axis.val, #should the y axis values be printed, 'default' prints each axis if 'rownames' or 'colnames' is not 'NULL'
x.axis.val.pos = x.axis.val.pos, #y coordiante of the x axis values
y.axis.val.pos = y.axis.val.pos, #x coordiante of the y axis values
cex.main=cex.main,
cex.lab=cex.lab,
yaxis.line=yaxis.line, #the position of the y axis (the argument 'line')
xaxis.line=xaxis.line, #the position of the x axis (the argument 'line')
legend.left=legend.left,#how much left should the legend be from the matrix
legend.up=legend.up, #how much left should the legend be from the matrix
legend.size=legend.size, #relative legend size
legend.text.hor.pos=legend.text.hor.pos, #horizontal position of the legend text (bottom) - 0 = bottom, 0.5 = middle,...
par.line.width = par.line.width , #the width of the line that seperates the partitions
par.line.col = par.line.col, #the color of the line that seperates the partitions
IM.dens= IM.dens,
IM= IM, #Image used for ploting (shaded lines)
wIM=wIM, #which IM (if more) should be used for ploting (defualt = wnet) - used if IM is an array
use.IM=use.IM, #should IM be used for ploting?
dens.leg=dens.leg,
blackdens=blackdens,
plotLines = plotLines,...
)
return(invisible(NULL))
}
}
dm<-dim(M)
if(!inherits(M, c("matrix","mat"))){
pack<-attr(class(M),"package")
if(!(is.null(pack))&&pack=="Matrix"){
if(requireNamespace("Matrix")){
M<-as.matrix(M)
} else stop("The supplied object needs Matrix packege, but the package is not available (install it!!!).")
} else {
warning("Attempting to convert object of class ",class(M)," to class 'matrix'. Keep fingers crossed.")
M<-as.matrix(M)
}
}
if(replaceNAdiagWith0 & all(is.na(diag(M)))) diag(M)<-0
if(is.null(main)){
objName<-deparse(substitute(M))
if(objName[1]=="x"){
objName<-deparse(substitute(x))
}
if(length(objName)>1) objName=""
main <- paste("Matrix",objName)
if(nchar(main)>50) main<-substr(main,1,50)
}
#if(length(main)>26)
if(is.logical(print.axes.val)){
print.x.axis.val<-print.y.axis.val<-print.axes.val
}
#defining text on the axes if row or colnames do not exist
if(is.null(rownames(M))){
rownames(M)<-1:dm[1]
}
if(is.null(colnames(M))){
colnames(M)<-1:dm[2]
}
if(!is.null(clu)){ #is any clustering provided, ordering of the matrix if 'TRUE'
if(is.list(clu)){
clu<-lapply(clu,function(x)as.integer(as.factor(x)))
tmNclu<-sapply(clu,max)
for(iMode in 2:length(tmNclu)){
clu[[iMode ]]<-clu[[iMode ]]+sum(tmNclu[1:(iMode -1)])
}
unlistClu<-unlist(clu)
if( all(length(unlistClu)==dm)) clu<-unlistClu
}
if(!is.list(clu)){
tclu<-table(clu)
or.c<-or.r<-order(clu)
clu<-list(clu,clu)
lines.col<-cumsum(tclu)[-length(tclu)]*1/dm[2]
lines.row<-1-lines.col
}else if(is.list(clu)&&length(clu)==2){
if(!is.null(clu[[1]])){
tclu.r<-table(clu[[1]])
or.r<-order(clu[[1]])
lines.row<- 1-cumsum(tclu.r)[-length(tclu.r)]*1/dm[1]
} else{
or.r<-1:dim(M)[1]
lines.row<-NULL
}
if(!is.null(clu[[2]])){
tclu.c<-table(clu[[2]])
or.c<-order(clu[[2]])
lines.col<-cumsum(tclu.c)[-length(tclu.c)]*1/dm[2]
} else{
or.c<-1:dim(M)[2]
lines.col<-NULL
}
} else stop("Networks with more that 2 modes (ways) must convert to 1-mode networks before it is sent to this function.")
M<-M[or.r,or.c]
clu<-lapply(clu,function(x)as.numeric(factor(x)))
}
if(is.null(IM.dens)){
if(!is.null(IM)&use.IM){
IM.dens<-matrix(-1,ncol=dim(IM)[2],nrow=dim(IM)[1])
for(i in names(dens.leg)){
IM.dens[IM==i]<- dens.leg[i]
}
}
}
if(!is.null(IM.dens)){
dens<-matrix(-1,nrow=dm[1], ncol=dm[2])
for(i in unique(clu[[1]])){
for(j in unique(clu[[2]])){
dens[clu[[1]]==i,clu[[2]]==j]<-IM.dens[i,j]
}
}
dens<-dens[or.r,or.c]
}
if(length(cex.axes)==1) cex.axes<-c(cex.axes,cex.axes)
if(cex.axes[1]=="default"){ #defining the size of text on the axes
cex.y.axis<-min(15/dm[1],1)
}else{
cex.y.axis<-cex.axes[1]
}
if(cex.axes[2]=="default"){ #defining the size of text on the axes
cex.x.axis<-min(15/dm[2],1)
}else{
cex.x.axis<-cex.axes[2]
}
#defining text on the axes
yaxe<-rownames(M)
xaxe<-colnames(M)
ytop <- rep(x=(dm[1]:1)/dm[1],times=dm[2]) #definin the positions of rectangules
ybottom<- ytop - 1/dm[1]
xright <- rep(x=(1:dm[2])/dm[2],each=dm[1])
xleft <- xright - 1/dm[2]
if(all(M %in% c(0,1))){
# browser()
mulCol<-mulCol
if(is.null(colByRow)&is.null(colByCol)) {
colByRow<-colByCol<-colByUnits
} else {
if(is.null(colByRow)){
colByRow<-rep(0, length(colByCol))
mulCol<-1
}
if(is.null(colByCol)){
colByCol<-rep(0, length(colByRow))
}
colByUnits<-TRUE
}
col<-M
if(all(col %in% c(0,1))& (!is.null(colByUnits))){
newCol<-outer(colByRow,colByCol*mulCol,FUN=joinColOperator)
if(!is.null(clu)) newCol<-newCol[or.r,or.c]
if(colTies){
col[M>0]<-col[M>0]+newCol[M>0]
}else{
newCol[newCol>0]<-newCol[newCol>0]+1
col[M==0]<-col[M==0]+newCol[M==0]
}
}
} else {
aM<-abs(M)
if(!is.null(maxValPlot)){
aM[aM>maxValPlot]<-maxValPlot
}
max.aM<-max(aM)
aMnorm<-as.vector(aM)/max.aM
if(max.aM!=0){
col<-gray(1-aMnorm) #definin the color of rectangules
}else col<-matrix(gray(1),nrow=dm[1],ncol=dm[2])
col[M<0]<-paste("#FF",substr(col[M<0],start=4,stop=7),sep="")
}
asp<-dm[1]/dm[2] #making sure that the cells are squares
par(mar=mar, xpd=NA) #ploting
plot.default(c(0,1),c(0,1),type="n",axes=FALSE,ann=FALSE,xaxs="i",asp=asp,...)
if(is.null(IM.dens)||all(IM.dens==-1)){
rect(xleft=xleft, ybottom=ybottom, xright=xright, ytop=ytop, col=col,cex.lab=cex.lab,border=if(plotLines)"black" else NA)
}else{
rect(xleft=xleft, ybottom=ybottom, xright=xright, ytop=ytop, col=col,cex.lab=cex.lab,density=dens,border=if(plotLines)"black" else NA)
}
if(frameMatrix) rect(xleft=0, ybottom=0, xright=1, ytop=1, cex.lab=cex.lab,border="black")
if(!is.null(clu)){ #ploting the lines between clusters
if(!is.null(lines.row)) segments(x0=x0ParLine,x1=x1ParLine,y0=lines.row,y1=lines.row,col=par.line.col,lwd=par.line.width)
if(!is.null(lines.col)) segments(y0=y0ParLine,y1=y1ParLine,x0=lines.col,x1=lines.col,col=par.line.col,lwd=par.line.width )
}
colYlabels <- colXlabels <- 1
if((length(colLabels)==1)&&is.logical(colLabels)){
if(colLabels){
if(is.null(clu)){
warning("clu not used!")
} else {
colYlabels <- clu[[1]]
colXlabels <- clu[[2]]
}
}
} else{
if(!is.list(colLabels))colLabels<-list(colLabels,colLabels)
if(length(colLabels[[1]])==dm[1]){
colYlabels<-colLabels[[1]]
} else {
warning("colLabels for first dimmension of wrong length, no colors will be used!")
}
if(length(colLabels[[2]])==dm[2]){
colXlabels<-colLabels[[2]]
} else {
warning("colLabels for second dimmension of wrong length, no colors will be used!")
}
}
if(!is.null(clu)){
if(length(colXlabels)>1) colXlabels<-colXlabels[or.c]
if(length(colYlabels)>1) colYlabels<-colYlabels[or.r]
}
if(print.y.axis.val) text(x=y.axis.val.pos, y = (dm[1]:1)/dm[1]-1/dm[1]/2 +val.y.coor.cor,labels = yaxe,cex=cex.y.axis,adj=1, col=colYlabels)
if(print.x.axis.val) text(y=x.axis.val.pos, x = (1:dm[2])/dm[2]-1/dm[2]/2 +val.x.coor.cor, srt=90, labels = xaxe, cex=cex.x.axis,adj=0, , col=colXlabels)
title(outer=outer.title,ylab=ylab,xlab=xlab,main=main, line=title.line,cex.main=cex.main)
if(print.val){ #ploting the values in the cells if selected
norm.val<-as.vector(M)/max(abs(M))
aMnorm<-abs(norm.val)
col.text<-1-round(aMnorm)
if(!print.0) col.text[as.vector(M)==0]<-0
if(length(table(col.text))==2) {
col.labels<-c("white","black")
} else col.labels<-c("white")
col.text<-as.character(factor(col.text,labels=col.labels))
if(!is.null(IM.dens)&&!all(IM.dens==-1)) col.text[col.text=="white"&dens>0&dens<blackdens]<-"black"
col.text[col.text=="black"&norm.val<0]<-"red"
if(!print.0) col.text[as.vector(M)==0]<-"transparent"
maxM<-formatC(max(M),format="e")
if(is.null(print.cells.mf)){
if(all(trunc(M)==M)& max(M)<10^print.digits.cells){
multi<-1
}else{
multi<-floor(log10(max(M)))
multi<-(multi-(print.digits.cells - 1))*(-1)
multi<-10^multi
}
}else multi <- print.cells.mf
M.plot<-round(M*multi)
text(x=(xleft+xright)/2+val.x.coor.cor,y=(ytop+ybottom)/2+val.y.coor.cor, labels=as.vector(M.plot),col=col.text,cex=ifelse(cex.val=="default",min(10/max(dm),1),cex.val))
if(multi!=1 & printMultipliedMessage) mtext(text=paste("* all values in cells were multiplied by ",multi,sep=""),side=1, line=-0.7,cex=0.70)
}
if(plot.legend){ #ploting the legend if selected
if(asp>=1){
xright.legend<- -legend.left
xleft.legend <- xright.legend - 1*legend.size*asp
ybottom.legend <- 1+(4:0)*legend.size+ legend.up
ytop.legend <- ybottom.legend + 1*legend.size
}else{
xright.legend<- -legend.left
xleft.legend <- xright.legend - 1*legend.size
ybottom.legend <- 1+(4:0)*legend.size*asp+ legend.up
ytop.legend <- ybottom.legend + 1*legend.size*asp
}
col.legend<-gray(4:0/4)
rect(xleft=xleft.legend, ybottom=ybottom.legend, xright=xright.legend, ytop=ytop.legend, col=col.legend)
if(print.legend.val=="out"|print.legend.val=="both") text(x=xright.legend + 1/20,y= (ytop.legend+ybottom.legend)/2, labels=formatC(0:4/4*max(M), digits = print.digits.legend,format="g"),adj=0,cex=cex.legend)
text(x=xleft.legend,y=ytop.legend[1] + legend.size/asp/2+0.02, labels=legend.title,font=2,cex=cex.legend,adj=0)
if(print.legend.val=="in"|print.legend.val=="both"){
col.text.legend<-round(4:0/4)
if(!print.0) col.text.legend[1]<-0
col.text.legend<-as.character(factor(col.text.legend,labels=c("white","black")))
if(!print.val){
if(is.null(print.cells.mf)){
if(all(trunc(M)==M)& max(M)<10^print.digits.cells){
multi<-1
}else{
multi<-floor(log10(max(M)))
multi<-(multi-(print.digits.cells - 1))*(-1)
multi<-10^multi
}
}else multi <- print.cells.mf
maxM<-round(max(M)*multi)
} else maxM<-max(M.plot)
text(x=(xleft.legend+xright.legend)/2,y=(ytop.legend+ybottom.legend)/2, labels=round(0:4/4*maxM),col=col.text.legend,cex=cex.legend)
}
}
par(mar=old.mar)
}
#' @rdname plotMat
#'
#' @param main.title Main title in \code{plot.array} version.
#' @param main.title.line The line in which main title is printed in \code{plot.array} version.
#' @param mfrow \code{mfrow} Argument to \code{par} - number of row and column plots to be plotted on one figure.
#'
#' @export
"plot.array" <- plotArray <-
function(
x=M, #x should be a matrix or similar object
M=x, #M should be a matrix or similar object - both (x and M) are here to make the code compatible with generic plot and with older versions of plot.mat and possbily some other functions in the package
IM=NULL, #the image to be used for plotting
..., #aditional arguments to plot.mat
main.title=NULL,main.title.line=-2,mfrow=NULL
){
if(is.null(main.title)){
objName<-deparse(substitute(M))
if(objName=="x")objName<-deparse(substitute(x))
main.title <- paste("Matrix",objName)
if(nchar(main.title)>50) main.title<-substr(main.title,1,50)
}
dM<-dim(M)
relDim<-which.min(dM)
nDim<-dM[relDim]
if(is.null(mfrow)|(prod(mfrow)<nDim)){
if(nDim<4){
mfrow<-c(1,nDim)
} else if(nDim<6){
mfrow<-c(2,ceiling(nDim/2))
} else{
nr<-round(sqrt(nDim/6)*2); nc<-ceiling(nDim/nr)
mfrow<-c(nr,nc)
}
}
par.def<-par(no.readonly = TRUE)
par(mfrow=mfrow)
relNames<-dimnames(M)[[relDim]]
if(is.null(relNames)) relNames<-1:nDim
for(i in 1:nDim){
#for(iName in relNames)
iName<-relNames[i]
if(relDim==1){
plot.mat(M[iName,,],main=iName, IM=IM[i,,],...)
} else if(relDim==3) plot.mat(M[,,iName],main=iName, IM=IM[i,,],...)
}
title(main=main.title,outer=TRUE,line=main.title.line)
par(par.def)
}
#' @rdname plotMat
#' @export plot.mat
#' @export
plot.mat <- plotMat
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.