Description Usage Arguments Details Value Examples
Given an array containing simulations from the posterior of a precision matrix, each individual precision matrix is converted to variances, covariances, and correlations.
1  | cholInvArray(x, prefix = "T", chol=FALSE)
 | 
x | 
 An array of winbugs output, with precision matrix entries of the form "T[1,3]"  | 
prefix | 
 The name of the precision matrix in winbugs, the "T" in "T[1,2 ]"  | 
chol | 
 If TRUE, the cholesky decomposition is returned instead of the inverse  | 
Inverts the matrices with the cholesky decomposition, but operating on all matrices simultaneously using array arithmetic.
An array with the third dimension's precision matrix entries changed to
"sdT[i,i]" | 
 for the standard deviation of component i  | 
"covT[i,j]" | 
 for the covariance between i and j  | 
"corrT[i,j]" | 
 for the correlations between i and j  | 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22  | # create a random positive definite matrix by 
# generating a lower triangle
  N=4
  lmat = diag(runif(N, 1, 10))
  thetri = lower.tri(lmat)
  lmat[thetri] = rnorm(sum(thetri), 0, 2)
#  precmat = solve(lmat %*% t(lmat))
  precmat = solve(lmat %*% t(lmat))
 
# put this matrix into an array 
  precarray = array(c(precmat), dim=c(1,1,length(precmat)))
  dimnames(precarray) = list(NULL, NULL, 
    paste("T[", rep(1:N, N), ",", rep(1:N, rep(N,N)), "]",sep="") )
# invert it with cholInvArray and the solve function
  cholInvArray(precarray)[1,1,]
  # the off diagonals of solve(precmat) should be 
  # the covT elements of cholInvArray(precarray)
  solve(precmat)
  # the standard deviations in cholInvArray(precarray) should be the 
  # root of the diagonals of solve(precmat)
  sqrt(diag(solve(precmat)))
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.