Description Usage Arguments Methods Examples
Method to simply evaluate a model at a fixed coefficient vector. It
creates a "gmmfit"
or "gelfit"
object using that fixed vector.
1 2 3 4 5 6 |
model |
An object of class |
theta |
A vector of coefficients at which the model is estimated |
wObj |
An object of class |
lambda |
The Lagrange multiplier vector. If not provided, the optimal vector is obtained for the given theta |
gelType |
The type of GEL. This argument is only used if we want
to fit the model with a different GEL method. see |
rhoFct |
An alternative objective function for GEL. This argument
is only used if we want to fit the model with a different GEL
method. see |
lamSlv |
An alternative solver for the Lagrange multiplier. By
default, either |
lControl |
A list of controls for the Lagrange multiplier algorithm. |
... |
Other arguments to pass. Not used for the moment. |
signature(model = "gmmModels")
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | data(simData)
theta <- c(beta0=1,beta1=2)
## A linearGmm
model1 <- gmmModel(y~x1, ~z1+z2, data=simData)
evalModel(model1, c(1,1))
## A nonlinearGmm
g <- y~beta0+x1^beta1
h <- ~z1+z2
model2 <- gmmModel(g, h, c(beta0=1, beta1=2), data=simData)
evalModel(model2, theta=c(beta1=2, beta0=0.5))
## A functionGmm
fct <- function(tet, x)
{
m1 <- (tet[1] - x)
m2 <- (tet[2]^2 - (x - tet[1])^2)
m3 <- x^3 - tet[1]*(tet[1]^2 + 3*tet[2]^2)
f <- cbind(m1, m2, m3)
return(f)
}
dfct <- function(tet, x)
{
jacobian <- matrix(c( 1, 2*(-tet[1]+mean(x)), -3*tet[1]^2-3*tet[2]^2,0, 2*tet[2],
-6*tet[1]*tet[2]), nrow=3,ncol=2)
return(jacobian)
}
model3 <- gmmModel(fct, simData$x3, theta0=c(beta0=1, beta1=2), grad=dfct)
evalModel(model3, theta=c(beta1=.1, beta0=0.3))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.