Nothing
### constants.R: "constants" for the lcmix package
LC_LOG2 <- log(2)
LC_LOGPI <- log(pi)
LC_LOG2PI <- log(2*pi)
LC_LOGSQRT2PI <- log(sqrt(2*pi))
LC_LOGSQRT2 <- log(sqrt(2))
# it's just useful to have these around
LC_EPS <- sqrt(.Machine$double.eps)
LC_LEPS <- log(LC_EPS)
LC_REPS <- 1.0 - LC_EPS
LC_LREPS <- log(LC_REPS)
# LC_EPS and LC_REPS ("reverse LC_EPS") are numbers very close, but not quite equal, to 0 and 1 respectively
LC_MAXSTDNORM <- 8
LC_MINSTDNORM <- -LC_MAXSTDNORM
# maximum and minimum values of standard normal random variables; going outside these bounds with a variable that is supposed to be standard normal (e.g. Phi^-1(F(x)) for any random variable x) may lead to instability
LC_ITER_MAX <- 1000
# default max iterations for EM
LC_ITER_TOL <- 1e-6 # 1e-6 or LC_EPS
# point below which relative changes in log-likelihood must fall to terminate the algorithm
LC_TOPOLOGY <- c("layered", "chained")
# topologies for multi-data models
LC_FAMILY <- list(normal = list(uni="norm", multi="mvnorm"),
pvii = list(uni="pvii", multi="mvpvii"),
weibull = list(uni="weisd", multi="mvweisd"),
gamma = list(uni="gamma", multi="mvgamma"),
exponential = list(uni="exp", multi="mvexp"),
altpvii = list(uni="apvii", multi="amvpvii"))
# names of acceptable model distribution _families_ are names(LC_FAMILY); the $uni and $multi elements of the elements of LC_FAMILY give the names of the applicable univariate and multivariate distributions, respectively, for those families
LC_NONNEGFAM <- c("weibull", "gamma", "exponential")
# distribution families requiring non-negative values
LC_DISTN <- as.vector(unlist(LC_FAMILY))
# names of acceptable model _distributions_
LC_SIMPAR = list(
hidden = list(
prob0 = c(0.03, 0.97),
probz = list(
binding = c(0.03, 0.97),
expression = c(0.05, 0.92, 0.03),
conservation = c(0.25, 0.75)
)
),
observed = list(
binding = list(
mean = c(0.825, -0.825),
var = c(1.50, 0.50),
sd = sqrt(c(1.50, 0.50))
),
expression = list(
mean = matrix(c( 1.5, 1.5, 1.5,
0.00, 0.00, 0.00,
-1.5, -1.5, -1.5),
nrow=3, byrow=TRUE),
cov = list(
matrix(c( 3.00, 1.00, -0.50,
1.00, 3.00, 0.00,
-0.50, 0.00, 3.00),
nrow=3, byrow=TRUE),
diag(3),
matrix(c( 2.00, -0.20, 0.10,
-0.20, 2.00, 0.10,
0.10, 0.10, 2.00),
nrow=3, byrow=TRUE)
)
),
conservation = list(
mean = c(1.25, -1.25),
var = c(1.50, 0.50),
sd = sqrt(c(1.50, 0.50))
)
)
) # marginal distribution parameters for simulating data with similar performance to the Ci data
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.