Nothing
## This file contains:
## Functions for fitting CLMMs with a single simple random-effects
## term (ssr).
rho.clm2clmm.ssr <- function(rho, retrms, ctrl)
### Version of rho.clm2clmm that is set up to use the C
### implementations of Laplace, AGQ and GHQ for a single random
### effect.
{
gfList <- retrms$gfList
rho$grFac <- gfList[[1]]
rho$ctrl <- ctrl
rho$sigma <- rep(1, nrow(rho$B1))
rho$lambda <- 0
rho$nlev <- as.vector(sapply(gfList, nlevels))
rho$random.names <- sapply(gfList, levels)
rho$tau.names <- names(gfList)
rho$nrandom <- sum(rho$nlev) ## no. random effects
rho$Niter <- 0L
rho$neval <- 0L
rho$u <- rho$uStart <- rep(0, rho$nrandom)
rho$linkInt <- switch(rho$link,
logit = 1L,
probit = 2L,
cloglog = 3L,
loglog = 4L,
cauchit = 5L)
rho$ST <- lapply(retrms$retrms, `[[`, "ST")
}
## set.AGQ <- function(rho, nAGQ) {
## rho$nAGQ <- nAGQ
## if(nAGQ %in% c(0L, 1L)) return(invisible())
## ghq <- gauss.hermite(abs(nAGQ))
## rho$ghqns <- ghq$nodes
## rho$ghqws <-
## if(nAGQ > 0) ghq$weights ## AGQ
## else log(ghq$weights) + (ghq$nodes^2)/2 ## GHQ
## }
clmm.fit.ssr <-
function(rho, control = list(), method=c("nlminb", "ucminf"),
Hess = FALSE)
### Fit a clmm with a single simple random effects term using AGQ, GHQ
### or Laplace.
{
optim.error <- function(fit, method)
if(inherits(fit, "try-error"))
stop("optimizer ", method, " terminated with an error", call.=FALSE)
### FIXME: Could have an argument c(warn, fail, ignore) to optionally
### return the fitted model despite the optimizer failing.
method <- match.arg(method)
## Set appropriate objective function:
obj.fun <-
if(rho$nAGQ < 0) getNGHQ.ssr
else if(rho$nAGQ > 1) getNAGQ.ssr
else getNLA.ssr ## nAGQ %in% c(0, 1)
init.val <- obj.fun(rho, rho$par)
if(!is.finite(init.val))
stop(gettextf("non-finite likelihood at starting value (%g)",
init.val), call.=FALSE)
## Fit the model:
if(method == "ucminf") {
fit <- try(ucminf(rho$par, function(par) obj.fun(rho, par),
control = control), silent=TRUE)
## Check if optimizer converged without error:
optim.error(fit, method)
## Save return value:
value <- fit$value
} else if(method == "nlminb") {
## hack to remove ucminf control settings:
keep <- !names(control) %in% c("grad", "grtol")
control <- if(length(keep)) control[keep] else list()
fit <- try(nlminb(rho$par, function(par) obj.fun(rho, par),
control = control), silent=TRUE)
## Check if optimizer converged without error:
optim.error(fit, method)
## Save return value:
value <- fit$objective
}
else stop("unkown optimization method: ", method)
## Extract parameters from optimizer results:
rho$par <- fit$par
## Ensure random mode estimation at optimum:
nllBase.uC(rho)
update.uC(rho)
rho$ST <- par2ST(rho$tau, rho$ST)
names(rho$ST) <- names(rho$dims$nlev.re)
## Format ranef modes and condVar:
ranef <- rho$u * rho$tau
condVar <- 1/rho$D * rho$tau^2
## names(ranef) <- names(condVar) <- rho$random.names
## ranef <- list(ranef)
## condVar <- list(condVar)
## names(ranef) <- names(condVar) <- rho$tau.names
## Prepare list of results:
res <- list(coefficients = fit$par[1:rho$dims$nfepar],
ST = rho$ST,
optRes = fit,
logLik = -value,
fitted.values = rho$fitted,
ranef = ranef,
condVar = condVar,
dims = rho$dims,
u = rho$u)
## Add gradient vector and optionally Hessian matrix:
## bound <- as.logical(paratBoundary2(rho))
## optpar <- fit$par[!bound]
if(Hess) {
## gH <- deriv12(function(par) obj.fun(rho, par, which=!bound),
gH <- deriv12(function(par) obj.fun(rho, par),
x=fit$par)
res$gradient <- gH$gradient
res$Hessian <- gH$Hessian
} else {
## res$gradient <- grad.ctr(function(par) getNLA(rho, par, which=!bound),
res$gradient <- grad.ctr(function(par) obj.fun(rho, par),
x=fit$par)
}
## Setting Niter and neval after gradient and Hessian evaluations:
res$Niter <- rho$Niter
res$neval <- rho$neval
return(res)
}
getNGHQ.ssr <- function(rho, par) {
### negative log-likelihood by standard Gauss-Hermite quadrature
### implemented in C:
if(!missing(par)) {
rho$par <- par
if(any(!is.finite(par)))
stop(gettextf(paste(c("Non-finite parameters occured:",
formatC(par, format="g")), collapse=" ")))
}
rho$neval <- rho$neval + 1L
nllBase.uC(rho) ## Update tau, eta1Fix and eta2Fix
with(rho, {
.C("getNGHQ",
nll = double(1),
as.integer(grFac),
as.double(tau),
as.double(eta1Fix),
as.double(eta2Fix),
as.double(o1),
as.double(o2),
as.double(sigma),
as.double(wts),
length(sigma),
length(uStart),
as.double(ghqns),
as.double(ghqws),
as.integer(abs(nAGQ)),
as.integer(linkInt),
as.double(ghqns * tau),
as.double(lambda))$nll
})
}
getNAGQ.ssr <- function(rho, par) {
### negative log-likelihood by adaptive Gauss-Hermite quadrature
### implemented in C:
if(!missing(par)) {
rho$par <- par
if(any(!is.finite(par)))
stop(gettextf(paste(c("Non-finite parameters occured:",
formatC(par, format="g")), collapse=" ")))
}
rho$neval <- rho$neval + 1L
if(!update.uC(rho)) return(Inf)
if(any(rho$D < 0)) return(Inf)
with(rho, {
.C("getNAGQ",
nll = double(1),
as.integer(grFac),
as.double(tau),
as.double(eta1Fix),
as.double(eta2Fix),
as.double(o1),
as.double(o2),
as.double(sigma),
as.double(wts),
length(sigma),
length(uStart),
as.double(ghqns),
as.double(log(ghqws)),
as.double(ghqns^2),
as.double(u),
as.double(D),
as.integer(abs(nAGQ)),
as.integer(linkInt),
as.double(lambda))$nll
})
}
getNLA.ssr <- function(rho, par) {
### negative log-likelihood by the Laplace approximation
### (with update.u2 in C or R):
if(!missing(par)) {
rho$par <- par
if(any(!is.finite(par)))
stop(gettextf(paste(c("Non-finite parameters occured:",
formatC(par, format="g")), collapse=" ")))
}
rho$neval <- rho$neval + 1L
if(!update.uC(rho)) return(Inf)
if(any(rho$D <= 0)) return(Inf)
logDetD <- sum(log(rho$D))
rho$negLogLik - rho$nrandom*log(2*pi)/2 + logDetD/2
}
nllBase.uC <- function(rho) {
### updates tau, eta1Fix and eta2Fix given new parameter values
with(rho, {
tau <- exp(par[nalpha + nbeta + 1:ntau])
eta1Fix <- drop(B1 %*% par[1:(nalpha + nbeta)])
eta2Fix <- drop(B2 %*% par[1:(nalpha + nbeta)])
})
return(invisible())
}
update.uC <- function(rho) {
### C-implementation of NR-algorithm.
nllBase.uC(rho) ## update: tau, eta1Fix, eta2Fix
fit <- with(rho, {
.C("NRalgv3",
as.integer(ctrl$trace),
as.integer(ctrl$maxIter),
as.double(ctrl$gradTol),
as.integer(ctrl$maxLineIter),
as.integer(grFac), ## OBS
as.double(tau), # stDev
as.double(o1),
as.double(o2),
as.double(eta1Fix),
as.double(eta2Fix),
as.double(sigma), ## rep(1, n)
as.integer(linkInt), ##
as.double(wts), ## pre. weights
u = as.double(uStart),
fitted = as.double(fitted), ## pre. pr
funValue = double(1),
gradValues = as.double(uStart),
hessValues = as.double(rep(1, length(uStart))),
length(fitted),
length(uStart),
maxGrad = double(1),
conv = 0L,
as.double(lambda), ##
Niter = as.integer(Niter) ## OBS
)[c("u", "fitted", "funValue", "gradValues",
"hessValues", "maxGrad", "conv", "Niter")] })
## Get message:
message <- switch(as.character(fit$conv),
"1" = "max|gradient| < tol, so current iterate is probably solution",
"0" = "Non finite negative log-likelihood",
"-1" = "iteration limit reached when updating the random effects",
"-2" = "step factor reduced below minimum when updating the random effects")
## Check for convergence and report warning/error:
if(rho$ctrl$trace > 0 && fit$conv == 1)
cat("\nOptimizer converged! ", "max|grad|:",
fit$maxGrad, message, fill = TRUE)
if(fit$conv != 1 && rho$ctrl$innerCtrl == "warnOnly")
warning(message, "\n at iteration ", rho$Niter)
else if(fit$conv != 1 && rho$ctrl$innerCtrl == "giveError")
stop(message, "\n at iteration ", rho$Niter)
## Store values and return:
rho$Niter <- fit$Niter
rho$fitted <- fit$fitted
rho$u <- fit$u
rho$D <- fit$hessValue
rho$gradient <- fit$gradValue
if(!is.finite(rho$negLogLik <- fit$funValue))
return(FALSE)
return(TRUE)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.