Nothing
## pomp object encoding the "SIRS model with seasonal reservoir" of
## King, A. A., Ionides, E. L., Pascual, M., & Bouma, M. J.
## Inapparent infections and cholera dynamics.
## Nature 454:877-880 (2008)
## Data are cholera deaths and decadal census figures from the Dacca district of Bengal province, 1891-1941.
##
## Data courtesy of Menno J. Bouma, London School of Tropical Medicine & Hygiene
##
## Native codes are in the package source.
require(pomp)
mle <- c(
gamma=20.8,eps=19.1,rho=0,
delta=0.02, deltaI=0.06, clin=1, alpha=1,
beta.trend=-0.00498,
log.beta1=0.747, log.beta2=6.38, log.beta3=-3.44, log.beta4=4.23, log.beta5=3.33, log.beta6=4.55,
log.omega1=log(0.184), log.omega2=log(0.0786), log.omega3=log(0.0584), log.omega4=log(0.00917), log.omega5=log(0.000208), log.omega6=log(0.0124),
sd.beta=3.13, tau=0.23,
S.0=0.621, I.0=0.378, Rs.0=0, R1.0=0.000843, R2.0=0.000972, R3.0=1.16e-07,
nbasis=6, nrstage=3
)
census <- data.frame(
year = c(1891L, 1901L, 1911L, 1921L, 1931L, 1941L),
census = c(2420656L, 2649522L, 2960402L, 3125967L, 3432577L, 4222142L)
)
cholera <- data.frame(
time=seq(from=1891+1/12,to=1941,by=1/12),
cholera.deaths = c(
2641L, 939L, 905L, 1219L, 368L, 78L, 29L, 12L, 30L, 44L, 270L, 1149L,
633L, 501L, 855L, 1271L, 666L, 101L, 62L, 23L, 20L, 28L, 461L,
892L, 751L, 170L, 253L, 906L, 700L, 98L, 57L, 72L, 471L, 4217L,
5168L, 4747L, 2380L, 852L, 1166L, 2122L, 576L, 60L, 53L, 62L,
241L, 403L, 551L, 739L, 862L, 348L, 490L, 5596L, 1180L, 142L,
41L, 28L, 39L, 748L, 3934L, 3562L, 587L, 311L, 1639L, 1903L,
601L, 110L, 32L, 19L, 82L, 420L, 1014L, 1073L, 416L, 168L, 909L,
1355L, 447L, 59L, 13L, 21L, 43L, 109L, 338L, 470L, 489L, 394L,
483L, 842L, 356L, 29L, 17L, 16L, 57L, 110L, 488L, 1727L, 1253L,
359L, 245L, 549L, 215L, 9L, 7L, 31L, 236L, 279L, 819L, 1728L,
1942L, 1251L, 3521L, 3412L, 290L, 46L, 35L, 14L, 79L, 852L, 2951L,
2656L, 607L, 172L, 325L, 2191L, 584L, 58L, 38L, 8L, 22L, 50L,
380L, 2059L, 938L, 389L, 767L, 1882L, 286L, 94L, 61L, 10L, 106L,
281L, 357L, 1388L, 810L, 306L, 381L, 1308L, 702L, 87L, 9L, 14L,
36L, 46L, 553L, 1302L, 618L, 147L, 414L, 768L, 373L, 39L, 10L,
36L, 151L, 1130L, 3437L, 4041L, 1415L, 207L, 92L, 128L, 147L,
32L, 7L, 59L, 426L, 2644L, 2891L, 4249L, 2291L, 797L, 680L, 1036L,
404L, 41L, 19L, 12L, 10L, 121L, 931L, 2158L, 1886L, 803L, 397L,
613L, 132L, 48L, 17L, 22L, 26L, 34L, 344L, 657L, 117L, 75L, 443L,
972L, 646L, 107L, 18L, 6L, 9L, 5L, 12L, 142L, 133L, 189L, 1715L,
3115L, 1412L, 182L, 50L, 37L, 77L, 475L, 1730L, 1489L, 620L,
190L, 571L, 1558L, 440L, 27L, 7L, 14L, 93L, 1462L, 2467L, 1703L,
1262L, 458L, 453L, 717L, 232L, 26L, 16L, 18L, 9L, 78L, 353L,
897L, 777L, 404L, 799L, 2067L, 613L, 98L, 19L, 26L, 47L, 171L,
767L, 1896L, 887L, 325L, 816L, 1653L, 355L, 85L, 54L, 88L, 609L,
882L, 1363L, 2178L, 580L, 396L, 1493L, 2154L, 683L, 78L, 19L,
10L, 27L, 88L, 1178L, 1862L, 611L, 478L, 2697L, 3395L, 520L,
67L, 41L, 36L, 209L, 559L, 971L, 2144L, 1099L, 494L, 586L, 508L,
269L, 27L, 19L, 21L, 12L, 22L, 333L, 676L, 487L, 262L, 535L,
979L, 170L, 25L, 9L, 19L, 13L, 45L, 229L, 673L, 432L, 107L, 373L,
1126L, 339L, 19L, 11L, 3L, 15L, 101L, 539L, 709L, 200L, 208L,
926L, 1783L, 831L, 103L, 37L, 17L, 33L, 179L, 426L, 795L, 481L,
491L, 773L, 936L, 325L, 101L, 22L, 25L, 24L, 88L, 633L, 513L,
298L, 93L, 687L, 1750L, 356L, 33L, 2L, 18L, 70L, 648L, 2471L,
1270L, 616L, 193L, 706L, 1372L, 668L, 107L, 58L, 21L, 23L, 93L,
318L, 867L, 332L, 118L, 437L, 2233L, 491L, 27L, 7L, 21L, 96L,
360L, 783L, 1492L, 550L, 176L, 633L, 922L, 267L, 91L, 42L, 4L,
10L, 7L, 43L, 377L, 563L, 284L, 298L, 625L, 131L, 35L, 12L, 8L,
9L, 83L, 502L, 551L, 256L, 198L, 664L, 1701L, 425L, 76L, 17L,
9L, 16L, 5L, 141L, 806L, 1603L, 587L, 530L, 771L, 511L, 97L,
35L, 39L, 156L, 1097L, 1233L, 1418L, 1125L, 420L, 1592L, 4169L,
1535L, 371L, 139L, 55L, 85L, 538L, 1676L, 1435L, 804L, 370L,
477L, 394L, 306L, 132L, 84L, 87L, 53L, 391L, 1541L, 1859L, 894L,
326L, 853L, 1891L, 1009L, 131L, 77L, 63L, 66L, 33L, 178L, 1003L,
1051L, 488L, 911L, 1806L, 837L, 280L, 132L, 76L, 381L, 1328L,
2639L, 2164L, 1082L, 326L, 254L, 258L, 119L, 106L, 93L, 29L,
17L, 17L, 17L, 46L, 79L, 135L, 1290L, 2240L, 561L, 116L, 24L,
15L, 33L, 18L, 16L, 38L, 26L, 45L, 151L, 168L, 57L, 32L, 29L,
27L, 20L, 106L, 1522L, 2013L, 434L, 205L, 528L, 634L, 195L, 45L,
33L, 19L, 20L, 46L, 107L, 725L, 572L, 183L, 2199L, 4018L, 428L,
67L, 31L, 8L, 44L, 484L, 1324L, 2054L, 467L, 216L, 673L, 887L,
353L, 73L, 46L, 15L, 20L, 27L, 25L, 38L, 158L, 312L, 1226L, 1021L,
222L, 90L, 31L, 93L, 368L, 657L, 2208L, 2178L, 702L, 157L, 317L,
146L, 63L, 27L, 22L, 23L, 28L, 225L, 483L, 319L, 120L, 59L, 274L,
282L, 155L, 31L, 16L, 15L, 12L, 14L, 14L, 42L
)
)
covar.dt <- 0.01
nbasis <- as.integer(mle["nbasis"])
nrstage <- as.integer(mle["nrstage"])
t0 <- with(cholera,2*time[1]-time[2])
tcovar <- seq(from=t0,to=max(cholera$time)+2/12,by=covar.dt)
covartable <- data.frame(
time=tcovar,
seas=periodic.bspline.basis(tcovar-1/12,nbasis=nbasis,degree=3,period=1),
pop=predict(smooth.spline(x=census$year,y=census$census),x=tcovar)$y,
dpopdt=predict(smooth.spline(x=census$year,y=census$census),x=tcovar,deriv=1)$y,
trend=tcovar-mean(tcovar)
)
pomp(
data=cholera,
times='time',
t0=t0,
params=mle,
nrstage = nrstage,
rprocess = euler.sim(
step.fun = "_cholmodel_one",
PACKAGE="pomp",
delta.t=1/240
),
dmeasure = "_cholmodel_norm_dmeasure",
rmeasure="_cholmodel_norm_rmeasure",
PACKAGE = "pomp",
covar=covartable,
tcovar='time',
zeronames = c("M","count"),
statenames = c("S","I","Rs","R1","M","W","count"),
paramnames = c("tau","gamma","eps","delta","deltaI",
"log.omega1","sd.beta","beta.trend","log.beta1",
"alpha","rho","clin","nbasis","nrstage",
"S.0","I.0","Rs.0","R1.0"),
covarnames = c("pop","dpopdt","seas.1","trend"),
all.state.names=c("S","I","Rs",paste("R",1:nrstage,sep=''),"M","W","count"),
comp.names=c("S","I","Rs",paste("R",1:nrstage,sep='')),
comp.ic.names=c("S.0","I.0","Rs.0",paste("R",1:nrstage,".0",sep='')),
fromEstimationScale="_cholmodel_trans",
toEstimationScale="_cholmodel_untrans",
initializer = function (params, t0, covars, nrstage, comp.ic.names, comp.names, all.state.names, ...) {
states <- numeric(length(all.state.names))
names(states) <- all.state.names
## translate fractions into initial conditions
frac <- params[comp.ic.names]
states[comp.names] <- round(covars['pop']*frac/sum(frac))
states
}
) -> dacca
c("dacca")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.