Nothing
########################################################
# #
# Exponential + normal distributions #
# #
# #
########################################################
# Log-likelihood ----------
cexponormlike <- function(parm, nXvar, nuZUvar, nvZVvar, uHvar,
vHvar, Yvar, Xvar, S) {
beta <- parm[1:(nXvar)]
delta <- parm[(nXvar + 1):(nXvar + nuZUvar)]
phi <- parm[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar)]
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
epsilon <- Yvar - as.numeric(crossprod(matrix(beta), t(Xvar)))
ll <- (-Wu / 2 + log(pnorm(-S * epsilon / sqrt(exp(Wv)) - sqrt(exp(Wv) / exp(Wu)))) +
S * epsilon / sqrt(exp(Wu)) + exp(Wv) / (2 * exp(Wu)))
return(ll)
}
# starting value for the log-likelihood ----------
cstexponorm <- function(olsObj, epsiRes, S, nuZUvar, uHvar, nvZVvar,
vHvar) {
m2 <- moment(epsiRes, order = 2)
m3 <- moment(epsiRes, order = 3)
if (S * m3 > 0) {
varu <- (abs((-S * m3 / 2)))^(2 / 3)
} else {
varu <- (-S * m3 / 2)^(2 / 3)
}
if (m2 < varu) {
varv <- abs(m2 - varu)
} else {
varv <- m2 - varu
}
dep_u <- 1 / 2 * log((epsiRes^2 - varv)^2)
dep_v <- 1 / 2 * log((epsiRes^2 - varu)^2)
reg_hetu <- if (nuZUvar == 1) {
lm(log(varu) ~ 1)
} else {
lm(dep_u ~ ., data = as.data.frame(uHvar[, 2:nuZUvar]))
}
if (any(is.na(reg_hetu$coefficients))) {
stop("At least one of the OLS coefficients of 'uhet' is NA: ",
paste(colnames(uHvar)[is.na(reg_hetu$coefficients)],
collapse = ", "
), ". This may be due to a singular matrix due to potential perfect multicollinearity",
call. = FALSE
)
}
reg_hetv <- if (nvZVvar == 1) {
lm(log(varv) ~ 1)
} else {
lm(dep_v ~ ., data = as.data.frame(vHvar[, 2:nvZVvar]))
}
if (any(is.na(reg_hetv$coefficients))) {
stop("at least one of the OLS coefficients of 'vhet' is NA: ",
paste(colnames(vHvar)[is.na(reg_hetv$coefficients)],
collapse = ", "
), ". This may be due to a singular matrix due to potential perfect multicollinearity",
call. = FALSE
)
}
delta <- coefficients(reg_hetu)
names(delta) <- paste0("Zu_", colnames(uHvar))
phi <- coefficients(reg_hetv)
names(phi) <- paste0("Zv_", colnames(vHvar))
if (names(olsObj)[1] == "(Intercept)") {
beta <- c(olsObj[1] + S * sqrt(varu), olsObj[-1])
} else {
beta <- olsObj
}
return(c(beta, delta, phi))
}
# Gradient of the likelihood function ----------
cgradexponormlike <- function(parm, nXvar, nuZUvar, nvZVvar, uHvar,
vHvar, Yvar, Xvar, S) {
beta <- parm[1:(nXvar)]
delta <- parm[(nXvar + 1):(nXvar + nuZUvar)]
phi <- parm[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar)]
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
epsilon <- Yvar - as.numeric(crossprod(matrix(beta), t(Xvar)))
mustar <- -(S * (epsilon) / exp(Wv / 2) + sqrt(exp(Wv) / exp(Wu)))
pmustar <- pnorm(mustar)
dmustar <- dnorm(mustar)
sigx <- exp(Wu) * pmustar * sqrt(exp(Wv) / exp(Wu))
sigx2 <- dmustar / (exp(Wv / 2) * pmustar)
pdmustar <- dmustar / pmustar
su_sv <- sqrt(exp(Wv) / exp(Wu))
sv_epsi <- S * (epsilon) / exp(Wv / 2)
su_epsi <- S * (epsilon) / exp(Wu / 2)
sigx3 <- 0.5 * (exp(Wv) / (exp(Wu) * su_sv)) - 0.5 * (sv_epsi)
gradll <- cbind(sweep(Xvar, MARGIN = 1, STATS = S * (sigx2 -
1 / exp(Wu / 2)), FUN = "*"), sweep(uHvar, MARGIN = 1, STATS = ((0.5 *
(dmustar / (sigx)) - 1 / (2 * exp(Wu))) * exp(Wv) - (0.5 +
0.5 * (su_epsi))), FUN = "*"), sweep(vHvar,
MARGIN = 1,
STATS = (exp(Wv) / (2 * exp(Wu)) - (sigx3) * pdmustar),
FUN = "*"
))
return(gradll)
}
# Hessian of the likelihood function ----------
chessexponormlike <- function(parm, nXvar, nuZUvar, nvZVvar, uHvar,
vHvar, Yvar, Xvar, S) {
beta <- parm[1:(nXvar)]
delta <- parm[(nXvar + 1):(nXvar + nuZUvar)]
phi <- parm[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar)]
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
epsilon <- Yvar - as.numeric(crossprod(matrix(beta), t(Xvar)))
mustar <- -(S * (epsilon) / exp(Wv / 2) + sqrt(exp(Wv) / exp(Wu)))
pmustar <- pnorm(mustar)
dmustar <- dnorm(mustar)
sigx <- exp(Wu) * pmustar * sqrt(exp(Wv) / exp(Wu))
sigx2 <- dmustar / (exp(Wv / 2) * pmustar)
pdmustar <- dmustar / pmustar
su_sv <- sqrt(exp(Wv) / exp(Wu))
sv_epsi <- S * (epsilon) / exp(Wv / 2)
su_epsi <- S * (epsilon) / exp(Wu / 2)
sigx3 <- 0.5 * (exp(Wv) / (exp(Wu) * su_sv)) - 0.5 * (sv_epsi)
hessll <- matrix(nrow = nXvar + nuZUvar + nvZVvar, ncol = nXvar +
nuZUvar + nvZVvar)
hessll[1:nXvar, 1:nXvar] <- crossprod(
sweep(Xvar,
MARGIN = 1,
STATS = S^2 * ((sv_epsi + su_sv) / (exp(Wv / 2)^2 * pmustar) -
sigx2 / (exp(Wv / 2) * pmustar)) * dmustar, FUN = "*"
),
Xvar
)
hessll[1:nXvar, (nXvar + 1):(nXvar + nuZUvar)] <- crossprod(sweep(Xvar,
MARGIN = 1, STATS = S * (0.5 * (((sv_epsi + su_sv) / (sigx) -
dmustar * exp(Wu) * su_sv / (sigx)^2) * dmustar * exp(Wv / 2)) +
0.5 / exp(Wu / 2)), FUN = "*"
), uHvar)
hessll[1:nXvar, (nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar)] <- crossprod(sweep(Xvar,
MARGIN = 1, STATS = -(S * ((sigx3) * (sv_epsi + su_sv -
pdmustar) + 0.5) * sigx2), FUN = "*"
), vHvar)
hessll[(nXvar + 1):(nXvar + nuZUvar), (nXvar + 1):(nXvar +
nuZUvar)] <- crossprod(sweep(uHvar, MARGIN = 1, STATS = ((0.5 *
((0.5 * ((sv_epsi + su_sv) / (exp(Wu) * pmustar)) - ((0.5 *
(dmustar * exp(Wv) / su_sv) + exp(Wu) * pmustar) *
su_sv - 0.5 * (exp(Wv) * pmustar / su_sv)) / (sigx)^2) *
dmustar) + (1 / (2 * exp(Wu)))) * exp(Wv) + 0.25 *
(su_epsi)), FUN = "*"), uHvar)
hessll[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar), (nXvar +
nuZUvar + 1):(nXvar + nuZUvar + nvZVvar)] <- crossprod(sweep(vHvar,
MARGIN = 1, STATS = (exp(Wv) / (2 * exp(Wu)) - ((sigx3)^2 *
(pdmustar + mustar) + 0.25 * (sv_epsi) + 0.5 * ((1 / exp(Wu) -
0.5 * (exp(Wv) / (exp(Wu) * su_sv)^2)) * exp(Wv) / su_sv)) *
pdmustar), FUN = "*"
), vHvar)
hessll[(nXvar + 1):(nXvar + nuZUvar), (nXvar + nuZUvar + 1):(nXvar +
nuZUvar + nvZVvar)] <- crossprod(
sweep(uHvar,
MARGIN = 1,
STATS = -((((sigx3) * (0.5 * (sv_epsi + su_sv) - 0.5 *
(pdmustar)) / (exp(Wu) * su_sv) - 0.5 * ((exp(Wu) *
su_sv - 0.5 * (exp(Wv) / su_sv)) / (exp(Wu) * su_sv)^2)) *
pdmustar + 1 / (2 * exp(Wu))) * exp(Wv)), FUN = "*"
),
vHvar
)
hessll[lower.tri(hessll)] <- t(hessll)[lower.tri(hessll)]
# hessll <- (hessll + (hessll))/2
return(hessll)
}
# Optimization using different algorithms ----------
exponormAlgOpt <- function(start, olsParam, dataTable, S, nXvar,
uHvar, nuZUvar, vHvar, nvZVvar, Yvar, Xvar, method, printInfo,
itermax, stepmax, tol, gradtol, hessianType, qac) {
startVal <- if (!is.null(start)) {
start
} else {
cstexponorm(
olsObj = olsParam, epsiRes = dataTable[["olsResiduals"]],
S = S, uHvar = uHvar, nuZUvar = nuZUvar, vHvar = vHvar,
nvZVvar = nvZVvar
)
}
startLoglik <- sum(cexponormlike(startVal,
nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar, vHvar = vHvar,
Yvar = Yvar, Xvar = Xvar, S = S
))
if (method %in% c("bfgs", "bhhh", "nr", "nm")) {
maxRoutine <- switch(method, bfgs = function(...) maxBFGS(...),
bhhh = function(...) maxBHHH(...), nr = function(...) maxNR(...),
nm = function(...) maxNM(...)
)
method <- "maxLikAlgo"
}
mleObj <- switch(method, ucminf = ucminf(
par = startVal,
fn = function(parm) {
-sum(cexponormlike(parm,
nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S
))
},
gr = function(parm) {
-colSums(cgradexponormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S
))
}, hessian = 0, control = list(
trace = if (printInfo) 1 else 0,
maxeval = itermax, stepmax = stepmax, xtol = tol,
grtol = gradtol
)
), maxLikAlgo = maxRoutine(
fn = cexponormlike,
grad = cgradexponormlike, hess = chessexponormlike, start = startVal,
finalHessian = if (hessianType == 2) "bhhh" else TRUE,
control = list(
printLevel = if (printInfo) 2 else 0,
iterlim = itermax, reltol = tol, tol = tol, qac = qac
),
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S
), sr1 = trust.optim(
x = startVal,
fn = function(parm) {
-sum(cexponormlike(parm,
nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S
))
},
gr = function(parm) {
-colSums(cgradexponormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S
))
}, method = "SR1", control = list(
maxit = itermax,
cgtol = gradtol, stop.trust.radius = tol, prec = tol,
report.level = if (printInfo) 2 else 0, report.precision = 1L
)
),
sparse = trust.optim(x = startVal, fn = function(parm) {
-sum(cexponormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S
))
}, gr = function(parm) {
-colSums(cgradexponormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S
))
}, hs = function(parm) {
as(-chessexponormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S
), "dgCMatrix")
}, method = "Sparse", control = list(
maxit = itermax,
cgtol = gradtol, stop.trust.radius = tol, prec = tol,
report.level = if (printInfo) 2 else 0, report.precision = 1L,
preconditioner = 1L
)), mla = mla(
b = startVal, fn = function(parm) {
-sum(cexponormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S
))
}, gr = function(parm) {
-colSums(cgradexponormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S
))
}, hess = function(parm) {
-chessexponormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S
)
}, print.info = printInfo, maxiter = itermax,
epsa = gradtol, epsb = gradtol
), nlminb = nlminb(
start = startVal,
objective = function(parm) {
-sum(cexponormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S
))
}, gradient = function(parm) {
-colSums(cgradexponormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S
))
}, hessian = function(parm) {
-chessexponormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S
)
}, control = list(
iter.max = itermax, trace = if (printInfo) 1 else 0,
eval.max = itermax, rel.tol = tol, x.tol = tol
)
)
)
if (method %in% c("ucminf", "nlminb")) {
mleObj$gradient <- colSums(cgradexponormlike(mleObj$par,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S
))
}
mlParam <- if (method %in% c("ucminf", "nlminb")) {
mleObj$par
} else {
if (method == "maxLikAlgo") {
mleObj$estimate
} else {
if (method %in% c("sr1", "sparse")) {
names(mleObj$solution) <- names(startVal)
mleObj$solution
} else {
if (method == "mla") {
mleObj$b
}
}
}
}
if (hessianType != 2) {
if (method %in% c("ucminf", "nlminb")) {
mleObj$hessian <- chessexponormlike(
parm = mleObj$par,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S
)
}
if (method == "sr1") {
mleObj$hessian <- chessexponormlike(
parm = mleObj$solution,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S
)
}
}
mleObj$logL_OBS <- cexponormlike(
parm = mlParam, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar, vHvar = vHvar,
Yvar = Yvar, Xvar = Xvar, S = S
)
mleObj$gradL_OBS <- cgradexponormlike(
parm = mlParam, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar, vHvar = vHvar,
Yvar = Yvar, Xvar = Xvar, S = S
)
return(list(
startVal = startVal, startLoglik = startLoglik,
mleObj = mleObj, mlParam = mlParam
))
}
# Conditional efficiencies estimation ----------
cexponormeff <- function(object, level) {
beta <- object$mlParam[1:(object$nXvar)]
delta <- object$mlParam[(object$nXvar + 1):(object$nXvar +
object$nuZUvar)]
phi <- object$mlParam[(object$nXvar + object$nuZUvar + 1):(object$nXvar +
object$nuZUvar + object$nvZVvar)]
Xvar <- model.matrix(object$formula,
data = object$dataTable,
rhs = 1
)
uHvar <- model.matrix(object$formula,
data = object$dataTable,
rhs = 2
)
vHvar <- model.matrix(object$formula,
data = object$dataTable,
rhs = 3
)
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
epsilon <- model.response(model.frame(object$formula, data = object$dataTable)) -
as.numeric(crossprod(matrix(beta), t(Xvar)))
mustar <- -object$S * epsilon - exp(Wv) / sqrt(exp(Wu))
u <- mustar + sqrt(exp(Wv)) * dnorm(mustar / sqrt(exp(Wv))) / pnorm(mustar / sqrt(exp(Wv)))
uLB <- mustar + qnorm(1 - (1 - (1 - level) / 2) * (1 - pnorm(-mustar / sqrt(exp(Wv))))) *
sqrt(exp(Wv))
uUB <- mustar + qnorm(1 - (1 - level) / 2 * (1 - pnorm(-mustar / sqrt(exp(Wv))))) *
sqrt(exp(Wv))
m <- ifelse(mustar > 0, mustar, 0)
if (object$logDepVar == TRUE) {
teJLMS <- exp(-u)
teMO <- exp(-m)
teBC <- exp(-mustar + 1 / 2 * exp(Wv)) * pnorm(mustar / sqrt(exp(Wv)) -
sqrt(exp(Wv))) / pnorm(mustar / sqrt(exp(Wv)))
teBCLB <- exp(-uUB)
teBCUB <- exp(-uLB)
res <- bind_cols(
u = u, uLB = uLB, uUB = uUB, teJLMS = teJLMS,
m = m, teMO = teMO, teBC = teBC, teBCLB = teBCLB,
teBCUB = teBCUB
)
} else {
res <- bind_cols(u = u, uLB = uLB, uUB = uUB, m = m)
}
return(res)
}
# Marginal effects on inefficiencies ----------
cmargexponorm_Eu <- function(object) {
delta <- object$mlParam[(object$nXvar + 1):(object$nXvar +
object$nuZUvar)]
uHvar <- model.matrix(object$formula,
data = object$dataTable,
rhs = 2
)
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
margEff <- kronecker(matrix(delta[2:object$nuZUvar] * 1 / 2,
nrow = 1
), matrix(exp(Wu / 2), ncol = 1))
colnames(margEff) <- paste0("Eu_", colnames(uHvar)[-1])
return(margEff)
}
cmargexponorm_Vu <- function(object) {
delta <- object$mlParam[(object$nXvar + 1):(object$nXvar +
object$nuZUvar)]
uHvar <- model.matrix(object$formula,
data = object$dataTable,
rhs = 2
)
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
margEff <- kronecker(
matrix(delta[2:object$nuZUvar], nrow = 1),
matrix(exp(Wu), ncol = 1)
)
colnames(margEff) <- paste0("Vu_", colnames(uHvar)[-1])
return(margEff)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.