Nothing
########################################################
# #
# Generalized-exponential + normal distributions #
# #
# #
########################################################
# Log-likelihood ----------
cgenexponormlike <- function(parm, nXvar, nuZUvar, nvZVvar, uHvar,
vHvar, Yvar, Xvar, S) {
beta <- parm[1:(nXvar)]
delta <- parm[(nXvar + 1):(nXvar + nuZUvar)]
phi <- parm[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar)]
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
epsilon <- Yvar - as.numeric(crossprod(matrix(beta), t(Xvar)))
A <- S * epsilon/exp(Wu/2) + exp(Wv)/(2 * exp(Wu))
B <- 2 * S * epsilon/exp(Wu/2) + 2 * exp(Wv)/exp(Wu)
a <- -S * epsilon/exp(Wv/2) - exp(Wv/2)/exp(Wu/2)
b <- -S * epsilon/exp(Wv/2) - 2 * exp(Wv/2)/exp(Wu/2)
ll <- log(2) - 1/2 * Wu + log(exp(A) * pnorm(a) - exp(B) *
pnorm(b))
return(ll)
}
# starting value for the log-likelihood ----------
cstgenexponorm <- function(olsObj, epsiRes, S, nuZUvar, uHvar,
nvZVvar, vHvar) {
m2 <- moment(epsiRes, order = 2)
m3 <- moment(epsiRes, order = 3)
if (S * m3 > 0) {
varu <- (abs((-S * m3/9)))^(2/3)
} else {
varu <- (-S * m3/9)^(2/3)
}
if (m2 < varu) {
varv <- abs(m2 - 5/4 * varu)
} else {
varv <- m2 - 5/4 * varu
}
dep_u <- 1/2 * log((epsiRes^2 - varv)^2)
dep_v <- 1/2 * log((epsiRes^2 - varu)^2)
reg_hetu <- if (nuZUvar == 1) {
lm(log(varu) ~ 1)
} else {
lm(dep_u ~ ., data = as.data.frame(uHvar[, 2:nuZUvar]))
}
if (any(is.na(reg_hetu$coefficients)))
stop("At least one of the OLS coefficients of 'uhet' is NA: ",
paste(colnames(uHvar)[is.na(reg_hetu$coefficients)],
collapse = ", "), ". This may be due to a singular matrix due to potential perfect multicollinearity",
call. = FALSE)
reg_hetv <- if (nvZVvar == 1) {
lm(log(varv) ~ 1)
} else {
lm(dep_v ~ ., data = as.data.frame(vHvar[, 2:nvZVvar]))
}
if (any(is.na(reg_hetv$coefficients)))
stop("at least one of the OLS coefficients of 'vhet' is NA: ",
paste(colnames(vHvar)[is.na(reg_hetv$coefficients)],
collapse = ", "), ". This may be due to a singular matrix due to potential perfect multicollinearity",
call. = FALSE)
delta <- coefficients(reg_hetu)
names(delta) <- paste0("Zu_", colnames(uHvar))
phi <- coefficients(reg_hetv)
names(phi) <- paste0("Zv_", colnames(vHvar))
if (names(olsObj)[1] == "(Intercept)") {
beta <- c(olsObj[1] + S * sqrt(varu) * 3/2, olsObj[-1])
} else {
beta <- olsObj
}
return(c(beta, delta, phi))
}
# Gradient of the likelihood function ----------
cgradgenexponormlike <- function(parm, nXvar, nuZUvar, nvZVvar,
uHvar, vHvar, Yvar, Xvar, S) {
beta <- parm[1:(nXvar)]
delta <- parm[(nXvar + 1):(nXvar + nuZUvar)]
phi <- parm[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar)]
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
epsilon <- Yvar - as.numeric(crossprod(matrix(beta), t(Xvar)))
wvwu <- exp(Wv/2)/exp(Wu/2)
wvwuepsi <- wvwu + S * (epsilon)/exp(Wv/2)
wvwuepsix2 <- 2 * (wvwu) + S * (epsilon)/exp(Wv/2)
a <- -(wvwuepsi)
pa <- pnorm(a)
da <- dnorm(a)
b <- -(wvwuepsix2)
pb <- pnorm(b)
db <- dnorm(b)
eA <- exp(exp(Wv)/(2 * exp(Wu)) + S * (epsilon)/exp(Wu/2))
eB <- exp(2 * (exp(Wv)/exp(Wu)) + 2 * (S * (epsilon)/exp(Wu/2)))
eC <- 2 * (exp(Wv)/exp(Wu)) + S * (epsilon)/exp(Wu/2)
epsiv <- 0.5 * (S * (epsilon)/exp(Wv/2))
epsiuv <- 0.5 * (wvwu) - epsiv
pda <- da/exp(Wv/2) - pa/exp(Wu/2)
sigx1 <- (pda) * eA - (db/exp(Wv/2) - 2 * (pb/exp(Wu/2))) *
eB
pab <- eA * pa - eB * pb
sigx2 <- 0.5 * (S * (epsilon)/exp(Wu/2)) + 2 * (exp(Wu) *
exp(Wv)/(2 * exp(Wu))^2)
sigx3 <- (0.5 * (da * wvwu) - (sigx2) * pa) * eA - (db *
wvwu - (eC) * pb) * eB
sigx5 <- 2 * (exp(Wv) * pb/exp(Wu)) - db * (wvwu - epsiv)
sigx4 <- eA * (exp(Wv) * pa/(2 * exp(Wu)) - (epsiuv) * da) -
(sigx5) * eB
gradll <- cbind(sweep(Xvar, MARGIN = 1, STATS = S * (sigx1)/(pab),
FUN = "*"), sweep(uHvar, MARGIN = 1, STATS = ((sigx3)/(pab) -
0.5), FUN = "*"), sweep(vHvar, MARGIN = 1, STATS = (sigx4)/(pab),
FUN = "*"))
return(gradll)
}
# Hessian of the likelihood function ----------
chessgenexponormlike <- function(parm, nXvar, nuZUvar, nvZVvar,
uHvar, vHvar, Yvar, Xvar, S) {
beta <- parm[1:(nXvar)]
delta <- parm[(nXvar + 1):(nXvar + nuZUvar)]
phi <- parm[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar)]
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
epsilon <- Yvar - as.numeric(crossprod(matrix(beta), t(Xvar)))
wvwu <- exp(Wv/2)/exp(Wu/2)
wvwuepsi <- wvwu + S * (epsilon)/exp(Wv/2)
wvwuepsix2 <- 2 * (wvwu) + S * (epsilon)/exp(Wv/2)
a <- -(wvwuepsi)
pa <- pnorm(a)
da <- dnorm(a)
b <- -(wvwuepsix2)
pb <- pnorm(b)
db <- dnorm(b)
eA <- exp(exp(Wv)/(2 * exp(Wu)) + S * (epsilon)/exp(Wu/2))
eB <- exp(2 * (exp(Wv)/exp(Wu)) + 2 * (S * (epsilon)/exp(Wu/2)))
eC <- 2 * (exp(Wv)/exp(Wu)) + S * (epsilon)/exp(Wu/2)
epsiv <- 0.5 * (S * (epsilon)/exp(Wv/2))
epsiuv <- 0.5 * (wvwu) - epsiv
pda <- da/exp(Wv/2) - pa/exp(Wu/2)
sigx1 <- (pda) * eA - (db/exp(Wv/2) - 2 * (pb/exp(Wu/2))) *
eB
pab <- eA * pa - eB * pb
sigx2 <- 0.5 * (S * (epsilon)/exp(Wu/2)) + 2 * (exp(Wu) *
exp(Wv)/(2 * exp(Wu))^2)
sigx3 <- (0.5 * (da * wvwu) - (sigx2) * pa) * eA - (db *
wvwu - (eC) * pb) * eB
sigx5 <- 2 * (exp(Wv) * pb/exp(Wu)) - db * (wvwu - epsiv)
sigx4 <- eA * (exp(Wv) * pa/(2 * exp(Wu)) - (epsiuv) * da) -
(sigx5) * eB
hessll <- matrix(nrow = nXvar + nuZUvar + nvZVvar, ncol = nXvar +
nuZUvar + nvZVvar)
hessll[1:nXvar, 1:nXvar] <- crossprod(sweep(Xvar, MARGIN = 1,
STATS = S^2 * ((((wvwuepsi)/exp(Wv/2) - 1/exp(Wu/2)) *
da/exp(Wv/2) - (pda)/exp(Wu/2)) * eA - ((((wvwuepsix2)/exp(Wv/2) -
2/exp(Wu/2)) * db/exp(Wv/2) - 2 * ((db/exp(Wv/2) -
2 * (pb/exp(Wu/2)))/exp(Wu/2))) * eB + (sigx1)^2/(pab)))/(pab),
FUN = "*"), Xvar)
hessll[1:nXvar, (nXvar + 1):(nXvar + nuZUvar)] <- crossprod(sweep(Xvar,
MARGIN = 1, STATS = S * ((((0.5 + sigx2) * pa - 0.5 *
(da * wvwu))/exp(Wu/2) + (0.5 * ((wvwuepsi)/exp(Wu/2)) -
(sigx2)/exp(Wv/2)) * da) * eA - ((((wvwuepsix2)/exp(Wu/2) -
(eC)/exp(Wv/2)) * db + (pb - 2 * (db * wvwu - (eC) *
pb))/exp(Wu/2)) * eB + (sigx3) * (sigx1)/(pab)))/(pab),
FUN = "*"), uHvar)
hessll[1:nXvar, (nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar)] <- crossprod(sweep(Xvar,
MARGIN = 1, STATS = S * ((da * (exp(Wv)/(2 * exp(Wu)) -
((epsiuv) * (wvwuepsi) + 0.5))/exp(Wv/2) - (exp(Wv) *
pa/(2 * exp(Wu)) - (epsiuv) * da)/exp(Wu/2)) * eA -
(((2 * (exp(Wv)/exp(Wu)) - ((wvwuepsix2) * (wvwu -
epsiv) + 0.5)) * db/exp(Wv/2) - 2 * ((sigx5)/exp(Wu/2))) *
eB + (sigx1) * (sigx4)/(pab)))/(pab), FUN = "*"),
vHvar)
hessll[(nXvar + 1):(nXvar + nuZUvar), (nXvar + 1):(nXvar +
nuZUvar)] <- crossprod(sweep(uHvar, MARGIN = 1, STATS = (((0.5 *
(0.5 * (exp(Wv/2) * (wvwuepsi)/exp(Wu/2)) - 0.5) - 0.5 *
(sigx2)) * da * wvwu - ((0.5 * (da * wvwu) - (sigx2) *
pa) * (sigx2) + (2 * ((1 - 8 * (exp(Wu)^2/(2 * exp(Wu))^2)) *
exp(Wu) * exp(Wv)/(2 * exp(Wu))^2) - 0.25 * (S * (epsilon)/exp(Wu/2))) *
pa)) * eA - (((((wvwuepsix2) * exp(Wv/2) - S * (epsilon))/exp(Wu/2) -
(0.5 + 2 * (exp(Wv)/exp(Wu)))) * db * wvwu + (0.5 * (S *
(epsilon)/exp(Wu/2)) + 2 * (exp(Wv)/exp(Wu))) * pb -
(eC) * (db * wvwu - (eC) * pb)) * eB + (sigx3)^2/(pab)))/(pab),
FUN = "*"), uHvar)
hessll[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar), (nXvar +
nuZUvar + 1):(nXvar + nuZUvar + nvZVvar)] <- crossprod(sweep(vHvar,
MARGIN = 1, STATS = ((((exp(Wv) * pa/(2 * exp(Wu)) -
(epsiuv) * da)/2 + (pa - (epsiuv) * da)/2) * exp(Wv)/exp(Wu) -
(0.25 * (wvwu) + 0.25 * (S * (epsilon)/exp(Wv/2)) -
(epsiuv)^2 * (wvwuepsi)) * da) * eA - (((2 *
(sigx5) + 2 * (pb - db * (wvwu - epsiv))) * exp(Wv)/exp(Wu) -
(0.25 * (S * (epsilon)/exp(Wv/2)) + 0.5 * (wvwu) +
b * (wvwu - epsiv)^2) * db) * eB + (sigx4)^2/(pab)))/(pab),
FUN = "*"), vHvar)
hessll[(nXvar + 1):(nXvar + nuZUvar), (nXvar + nuZUvar + 1):(nXvar +
nuZUvar + nvZVvar)] <- crossprod(sweep(uHvar, MARGIN = 1,
STATS = (((da * exp(Wv/2)/(4 * (exp(Wu) * exp(Wu/2))) -
2 * (exp(Wu) * pa/(2 * exp(Wu))^2)) * exp(Wv) - ((0.5 *
((epsiuv) * (wvwuepsi)) - 0.25) * da * wvwu + (sigx2) *
(exp(Wv) * pa/(2 * exp(Wu)) - (epsiuv) * da))) *
eA - ((sigx3) * (sigx4)/(pab) + (2 * ((db * wvwu -
pb) * exp(Wv)/exp(Wu)) - (((wvwuepsix2) * (wvwu -
epsiv) - 0.5) * db * wvwu + (sigx5) * (eC))) * eB))/(pab),
FUN = "*"), vHvar)
hessll[lower.tri(hessll)] <- t(hessll)[lower.tri(hessll)]
# hessll <- (hessll + (hessll))/2
return(hessll)
}
# Optimization using different algorithms ----------
genexponormAlgOpt <- function(start, olsParam, dataTable, S,
nXvar, uHvar, nuZUvar, vHvar, nvZVvar, Yvar, Xvar, method,
printInfo, itermax, stepmax, tol, gradtol, hessianType, qac) {
startVal <- if (!is.null(start))
start else cstgenexponorm(olsObj = olsParam, epsiRes = dataTable[["olsResiduals"]],
S = S, uHvar = uHvar, nuZUvar = nuZUvar, vHvar = vHvar,
nvZVvar = nvZVvar)
startLoglik <- sum(cgenexponormlike(startVal, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar, vHvar = vHvar,
Yvar = Yvar, Xvar = Xvar, S = S))
if (method %in% c("bfgs", "bhhh", "nr", "nm")) {
maxRoutine <- switch(method, bfgs = function(...) maxBFGS(...),
bhhh = function(...) maxBHHH(...), nr = function(...) maxNR(...),
nm = function(...) maxNM(...))
method <- "maxLikAlgo"
}
mleObj <- switch(method, ucminf = ucminf(par = startVal,
fn = function(parm) -sum(cgenexponormlike(parm, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S)),
gr = function(parm) -colSums(cgradgenexponormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S)), hessian = 0, control = list(trace = if (printInfo) 1 else 0,
maxeval = itermax, stepmax = stepmax, xtol = tol,
grtol = gradtol)), maxLikAlgo = maxRoutine(fn = cgenexponormlike,
grad = cgradgenexponormlike, hess = chessgenexponormlike,
start = startVal, finalHessian = if (hessianType == 2) "bhhh" else TRUE,
control = list(printLevel = if (printInfo) 2 else 0,
iterlim = itermax, reltol = tol, tol = tol, qac = qac),
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S), sr1 = trust.optim(x = startVal,
fn = function(parm) -sum(cgenexponormlike(parm, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S)),
gr = function(parm) -colSums(cgradgenexponormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S)), method = "SR1", control = list(maxit = itermax,
cgtol = gradtol, stop.trust.radius = tol, prec = tol,
report.level = if (printInfo) 2 else 0, report.precision = 1L)),
sparse = trust.optim(x = startVal, fn = function(parm) -sum(cgenexponormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S)), gr = function(parm) -colSums(cgradgenexponormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S)), hs = function(parm) as(-chessgenexponormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S), "dgCMatrix"), method = "Sparse", control = list(maxit = itermax,
cgtol = gradtol, stop.trust.radius = tol, prec = tol,
report.level = if (printInfo) 2 else 0, report.precision = 1L,
preconditioner = 1L)), mla = mla(b = startVal, fn = function(parm) -sum(cgenexponormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S)), gr = function(parm) -colSums(cgradgenexponormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S)), hess = function(parm) -chessgenexponormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S), print.info = printInfo, maxiter = itermax,
epsa = gradtol, epsb = gradtol), nlminb = nlminb(start = startVal,
objective = function(parm) -sum(cgenexponormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S)), gradient = function(parm) -colSums(cgradgenexponormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S)), hessian = function(parm) -chessgenexponormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S), control = list(iter.max = itermax, trace = if (printInfo) 1 else 0,
eval.max = itermax, rel.tol = tol, x.tol = tol)))
if (method %in% c("ucminf", "nlminb")) {
mleObj$gradient <- colSums(cgradgenexponormlike(mleObj$par,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S))
}
mlParam <- if (method %in% c("ucminf", "nlminb")) {
mleObj$par
} else {
if (method == "maxLikAlgo") {
mleObj$estimate
} else {
if (method %in% c("sr1", "sparse")) {
names(mleObj$solution) <- names(startVal)
mleObj$solution
} else {
if (method == "mla") {
mleObj$b
}
}
}
}
if (hessianType != 2) {
if (method %in% c("ucminf", "nlminb"))
mleObj$hessian <- chessgenexponormlike(parm = mleObj$par,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S)
if (method == "sr1")
mleObj$hessian <- chessgenexponormlike(parm = mleObj$solution,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S)
}
mleObj$logL_OBS <- cgenexponormlike(parm = mlParam, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar, vHvar = vHvar,
Yvar = Yvar, Xvar = Xvar, S = S)
mleObj$gradL_OBS <- cgradgenexponormlike(parm = mlParam,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S)
return(list(startVal = startVal, startLoglik = startLoglik,
mleObj = mleObj, mlParam = mlParam))
}
# Conditional efficiencies estimation ----------
cgenexponormeff <- function(object, level) {
beta <- object$mlParam[1:(object$nXvar)]
delta <- object$mlParam[(object$nXvar + 1):(object$nXvar +
object$nuZUvar)]
phi <- object$mlParam[(object$nXvar + object$nuZUvar + 1):(object$nXvar +
object$nuZUvar + object$nvZVvar)]
Xvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 1)
uHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 2)
vHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 3)
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
epsilon <- model.response(model.frame(object$formula, data = object$dataTable)) -
as.numeric(crossprod(matrix(beta), t(Xvar)))
A <- object$S * epsilon/exp(Wu/2) + exp(Wv)/(2 * exp(Wu))
B <- 2 * object$S * epsilon/exp(Wu/2) + 2 * exp(Wv)/exp(Wu)
a <- -object$S * epsilon/exp(Wv/2) - exp(Wv/2)/exp(Wu/2)
b <- -object$S * epsilon/exp(Wv/2) - 2 * exp(Wv/2)/exp(Wu/2)
u <- exp(Wv/2) * (exp(A) * (dnorm(a) + a * pnorm(a)) - exp(B) *
(dnorm(b) + b * pnorm(b)))/(exp(A) * pnorm(a) - exp(B) *
pnorm(b))
if (object$logDepVar == TRUE) {
teJLMS <- exp(-u)
teBC <- (exp(A) * exp(-a * exp(Wv/2) + exp(Wv)/2) * pnorm(a -
exp(Wv/2)) - exp(B) * exp(-b * exp(Wv/2) + exp(Wv)/2) *
pnorm(b - exp(Wv/2)))/(exp(A) * pnorm(a) - exp(B) *
pnorm(b))
res <- bind_cols(u = u, teJLMS = teJLMS, teBC = teBC)
} else {
res <- bind_cols(u = u)
}
return(res)
}
# Marginal effects on inefficiencies ----------
cmarggenexponorm_Eu <- function(object) {
delta <- object$mlParam[(object$nXvar + 1):(object$nXvar +
object$nuZUvar)]
uHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 2)
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
margEff <- kronecker(matrix(delta[2:object$nuZUvar] * 3/4,
nrow = 1), matrix(exp(Wu/2), ncol = 1))
colnames(margEff) <- paste0("Eu_", colnames(uHvar)[-1])
return(margEff)
}
cmarggenexponorm_Vu <- function(object) {
delta <- object$mlParam[(object$nXvar + 1):(object$nXvar +
object$nuZUvar)]
uHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 2)
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
margEff <- kronecker(matrix(delta[2:object$nuZUvar] * 5/4,
nrow = 1), matrix(exp(Wu), ncol = 1))
colnames(margEff) <- paste0("Vu_", colnames(uHvar)[-1])
return(margEff)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.