Nothing
########################################################
# #
# truncated normal + normal distributions + scaling #
# #
# #
########################################################
# Log-likelihood ----------
ctruncnormscalike <- function(parm, nXvar, nuZUvar, nvZVvar, uHvar,
vHvar, Yvar, Xvar, S) {
beta <- parm[1:(nXvar)]
delta <- parm[(nXvar + 1):(nXvar + nuZUvar - 1)]
tau <- parm[nXvar + length(delta) + 1]
cu <- parm[nXvar + length(delta) + 2]
phi <- parm[(nXvar + length(delta) + 2 + 1):(nXvar + length(delta) +
2 + nvZVvar)]
musca <- exp(as.numeric(crossprod(matrix(delta), t(uHvar[,
-1])))) * tau
Wusca <- cu + 2 * as.numeric(crossprod(matrix(delta), t(uHvar[,
-1])))
Wvsca <- as.numeric(crossprod(matrix(phi), t(vHvar)))
epsilon <- Yvar - as.numeric(crossprod(matrix(beta), t(Xvar)))
mustar <- (musca * exp(Wvsca) - exp(Wusca) * S * epsilon)/(exp(Wusca) +
exp(Wvsca))
sigmastar <- sqrt(exp(Wusca) * exp(Wvsca)/(exp(Wusca) + exp(Wvsca)))
ll <- (-1/2 * log(exp(Wusca) + exp(Wvsca)) + dnorm((musca +
S * epsilon)/sqrt(exp(Wusca) + exp(Wvsca)), log = TRUE) +
pnorm(mustar/sigmastar, log.p = TRUE) - pnorm(musca/sqrt(exp(Wusca)),
log.p = TRUE))
return(ll)
}
# starting value for the log-likelihood ----------
csttruncnormscal <- function(olsObj, epsiRes, S, nuZUvar, uHvar,
nvZVvar, vHvar) {
m2 <- moment(epsiRes, order = 2)
m3 <- moment(epsiRes, order = 3)
if (S * m3 > 0) {
## Coelli (1995) suggests 0.05 for gamma
varu <- (abs(S * m3 * sqrt(pi/2)/(1 - 4/pi)))^(2/3)
} else {
varu <- (S * m3 * sqrt(pi/2)/(1 - 4/pi))^(2/3)
}
if (m2 < (pi - 2)/pi * varu) {
varv <- abs(m2 - (1 - 2/pi) * varu)
} else {
varv <- m2 - (1 - 2/pi) * varu
}
dep_u <- 1/2 * log(((epsiRes^2 - varv) * pi/(pi - 2))^2)
dep_v <- 1/2 * log((epsiRes^2 - (1 - 2/pi) * varu)^2)
reg_hetu <- lm(dep_u ~ ., data = as.data.frame(uHvar[, 2:nuZUvar]))
if (any(is.na(reg_hetu$coefficients)))
stop("At least one of the OLS coefficients of 'uhet' is NA: ",
paste(colnames(uHvar)[is.na(reg_hetu$coefficients)],
collapse = ", "), ". This may be due to a singular matrix due to potential perfect multicollinearity",
call. = FALSE)
reg_hetv <- if (nvZVvar == 1) {
lm(log(varv) ~ 1)
} else {
lm(dep_v ~ ., data = as.data.frame(vHvar[, 2:nvZVvar]))
}
if (any(is.na(reg_hetv$coefficients)))
stop("at least one of the OLS coefficients of 'vhet' is NA: ",
paste(colnames(vHvar)[is.na(reg_hetv$coefficients)],
collapse = ", "), ". This may be due to a singular matrix due to potential perfect multicollinearity",
call. = FALSE)
if (names(olsObj)[1] == "(Intercept)") {
beta <- c(olsObj[1] + S * sqrt(varu * 2/pi), olsObj[-1])
} else {
beta <- olsObj
}
delta <- rep(0, length(coefficients(reg_hetu)) - 1)
cu <- unname(coefficients(reg_hetu)[1])
names(delta) <- paste0("Zscale_", colnames(uHvar)[-1])
phi <- coefficients(reg_hetv)
names(phi) <- paste0("Zv_", colnames(vHvar))
tau <- mean(epsiRes)
return(c(beta, delta, tau = tau, cu = cu, phi))
}
# Gradient of the likelihood function ----------
cgradtruncnormscalike <- function(parm, nXvar, nuZUvar, nvZVvar,
uHvar, vHvar, Yvar, Xvar, S) {
beta <- parm[1:(nXvar)]
delta <- parm[(nXvar + 1):(nXvar + nuZUvar - 1)]
tau <- parm[nXvar + length(delta) + 1]
cu <- parm[nXvar + length(delta) + 2]
phi <- parm[(nXvar + length(delta) + 2 + 1):(nXvar + length(delta) +
2 + nvZVvar)]
musca <- exp(as.numeric(crossprod(matrix(delta), t(uHvar[,
-1])))) * tau
Wusca <- cu + 2 * as.numeric(crossprod(matrix(delta), t(uHvar[,
-1])))
Wvsca <- as.numeric(crossprod(matrix(phi), t(vHvar)))
Hsca <- as.numeric(crossprod(matrix(delta), t(uHvar[, -1])))
epsilon <- Yvar - as.numeric(crossprod(matrix(beta), t(Xvar)))
sigma_sq <- exp(Wusca) + exp(Wvsca)
muwv <- musca * exp(Wvsca)
mustar <- (muwv - exp(Wusca) * S * epsilon)/(sigma_sq)
sigmastar <- sqrt(exp(Wusca) * exp(Wvsca)/(sigma_sq))
musig <- mustar/sigmastar
pmusig <- pnorm(musig)
dmusig <- dnorm(musig)
dmustar2 <- dnorm((S * (epsilon) + musca)/sqrt(sigma_sq))
dmu <- dnorm(musca/exp((Wusca)/2))
pmu <- pnorm(musca/exp((Wusca)/2))
muwvwu <- muwv - S * exp(Wusca) * (epsilon)
mustar3 <- (muwvwu)/((sigma_sq) * sigmastar)^2
mustar4 <- (muwv - 2 * (S * exp(Wusca) * (epsilon)))/((sigma_sq) *
sigmastar)
wusq <- exp(Wusca)/(sigma_sq)
wvsq <- exp(Wvsca)/(sigma_sq)
dpmusig <- dmusig/pmusig
pmusigx2 <- pmusig * sigmastar
wupmu <- exp((Wusca)/2) * pmu
muepsi <- S * (epsilon) + musca
muepsix2 <- musca - exp(Wusca) * (muepsi)/(sigma_sq)
dmusigwu <- dmusig * exp(Wusca)
dmusigwv <- dmusig * exp(Wvsca)
sigx2 <- (sigma_sq) * sigmastar
dmuepsi <- dmustar2 * (muepsi)^2
dmusq <- (dmustar2 * (sigma_sq))
sigx3 <- (0.5 * (dmuepsi/dmusq) - 0.5)/(sigma_sq)
sigx4 <- 0.5 * ((2 - 2 * (wusq)) * exp(Wvsca)/sigmastar) +
2 * sigmastar
sigx5 <- 0.5 * ((1 - wvsq) * exp(Wusca)/sigmastar) + sigmastar
sigx6 <- 0.5 * ((1 - wusq) * exp(Wvsca)/sigmastar) + sigmastar
sigx7 <- (sigx6) * mustar3 + S * (epsilon)/(sigx2)
sigx8 <- musca/(sigx2) - (sigx5) * mustar3
gradll <- (cbind(sweep(Xvar, MARGIN = 1, STATS = S * ((muepsi) +
dmusigwu/(pmusigx2))/(sigma_sq), FUN = "*"), sweep(matrix(uHvar[,
-1], ncol = nuZUvar - 1), MARGIN = 1, STATS = ((mustar4 -
(sigx4) * exp(Wusca) * mustar3) * dpmusig - ((muepsi) *
(muepsix2) + exp(Wusca))/(sigma_sq)), FUN = "*"), ((dmusigwv/(pmusigx2) -
(muepsi))/(sigma_sq) - dmu/(wupmu)) * exp(Hsca), (sigx3 -
(sigx7) * dpmusig) * exp(Wusca) + 0.5 * (tau * dmu *
exp(Hsca)/(wupmu)), sweep(vHvar, MARGIN = 1, STATS = (sigx3 +
dmusig * (sigx8)/pmusig) * exp(Wvsca), FUN = "*")))
return(gradll)
}
# Hessian of the likelihood function ----------
chesstruncnormscalike <- function(parm, nXvar, nuZUvar, nvZVvar,
uHvar, vHvar, Yvar, Xvar, S) {
beta <- parm[1:(nXvar)]
delta <- parm[(nXvar + 1):(nXvar + (nuZUvar - 1))]
tau <- parm[nXvar + (nuZUvar - 1) + 1]
cu <- parm[nXvar + (nuZUvar - 1) + 2]
phi <- parm[(nXvar + (nuZUvar - 1) + 2 + 1):(nXvar + (nuZUvar -
1) + 2 + nvZVvar)]
musca <- exp(as.numeric(crossprod(matrix(delta), t(uHvar[,
-1])))) * tau
Wusca <- cu + 2 * as.numeric(crossprod(matrix(delta), t(uHvar[,
-1])))
Wvsca <- as.numeric(crossprod(matrix(phi), t(vHvar)))
Hsca <- as.numeric(crossprod(matrix(delta), t(uHvar[, -1])))
epsilon <- Yvar - as.numeric(crossprod(matrix(beta), t(Xvar)))
sigma_sq <- exp(Wusca) + exp(Wvsca)
muwv <- musca * exp(Wvsca)
mustar <- (muwv - exp(Wusca) * S * epsilon)/(sigma_sq)
sigmastar <- sqrt(exp(Wusca) * exp(Wvsca)/(sigma_sq))
musig <- mustar/sigmastar
pmusig <- pnorm(musig)
dmusig <- dnorm(musig)
dmustar2 <- dnorm((S * (epsilon) + musca)/sqrt(sigma_sq))
dmu <- dnorm(musca/exp((Wusca)/2))
pmu <- pnorm(musca/exp((Wusca)/2))
muwvwu <- muwv - S * exp(Wusca) * (epsilon)
mustar3 <- (muwvwu)/((sigma_sq) * sigmastar)^2
mustar4 <- (muwv - 2 * (S * exp(Wusca) * (epsilon)))/((sigma_sq) *
sigmastar)
wusq <- exp(Wusca)/(sigma_sq)
wvsq <- exp(Wvsca)/(sigma_sq)
dpmusig <- dmusig/pmusig
pmusigx2 <- pmusig * sigmastar
wupmu <- exp((Wusca)/2) * pmu
muepsi <- S * (epsilon) + musca
muepsix2 <- musca - exp(Wusca) * (muepsi)/(sigma_sq)
dmusigwu <- dmusig * exp(Wusca)
dmusigwv <- dmusig * exp(Wvsca)
sigx2 <- (sigma_sq) * sigmastar
dmuepsi <- dmustar2 * (muepsi)^2
dmusq <- (dmustar2 * (sigma_sq))
sigx3 <- (0.5 * (dmuepsi/dmusq) - 0.5)/(sigma_sq)
sigx4 <- 0.5 * ((2 - 2 * (wusq)) * exp(Wvsca)/sigmastar) +
2 * sigmastar
sigx5 <- 0.5 * ((1 - wvsq) * exp(Wusca)/sigmastar) + sigmastar
sigx6 <- 0.5 * ((1 - wusq) * exp(Wvsca)/sigmastar) + sigmastar
sigx7 <- (sigx6) * mustar3 + S * (epsilon)/(sigx2)
sigx8 <- musca/(sigx2) - (sigx5) * mustar3
dmuepsix2 <- dmustar2 * (muepsi)
sigx9 <- 0.5 * ((((muepsi)^2/(sigma_sq) - 2)/dmusq - dmuepsi/dmusq^2) *
dmuepsix2/(sigma_sq))
sigx10 <- (0.5 * (((2 * (musca) - (muepsi)^2 * (muepsix2)/(sigma_sq))/dmusq -
(2 * (dmustar2 * exp(Wusca)) - dmustar2 * (muepsi) *
(muepsix2)) * (muepsi)/dmusq^2) * dmuepsix2) - 2 *
((0.5 * (dmuepsi/dmusq) - 0.5) * wusq))/(sigma_sq)
sigx11 <- 0.5 * (((2 - (muepsi)^2/(sigma_sq))/dmusq + dmuepsi/dmusq^2) *
dmuepsix2/(sigma_sq))
sigx12 <- (sigx5)/(sigx2)^2 + dmusig * (sigx8)/((sigma_sq) *
pmusigx2)
sigx13 <- (0.5 * ((0.5 * ((muepsi)^2/(dmustar2 * (sigma_sq)^3)) -
(0.5 * (dmuepsi/(sigma_sq)) + dmustar2)/dmusq^2) * dmuepsi) -
sigx3)
sigx14 <- 0.5 * (dmuepsi/dmusq)
sigx15 <- mustar4 - (sigx4) * exp(Wusca) * mustar3
sigx16 <- (muwvwu)/(sigx2) + dpmusig
hessll <- matrix(nrow = nXvar + (nuZUvar - 1) + 1 + 1 + nvZVvar,
ncol = nXvar + (nuZUvar - 1) + 1 + 1 + nvZVvar)
hessll[1:nXvar, 1:nXvar] <- crossprod(sweep(Xvar, MARGIN = 1,
STATS = S^2 * ((0 - 1) - ((muwvwu)/(exp(Wvsca) * pmusigx2) +
dmusigwu/(pmusigx2)^2) * dmusig * wusq)/(sigma_sq),
FUN = "*"), Xvar)
hessll[1:nXvar, (nXvar + 1):(nXvar + (nuZUvar - 1))] <- crossprod(sweep(Xvar,
MARGIN = 1, STATS = S * (((2/(sigx2) - (sigx4) * exp(Wusca)/(sigx2)^2) *
exp(Wusca) - (sigx15) * ((muwvwu)/exp(Wvsca) + dmusigwu/(pmusigx2))/(sigma_sq)) *
dpmusig - (((muepsi)^2/(sigma_sq) - 1) * (muepsix2) +
(exp(Wusca) - (muepsi) * (muepsix2)) * (muepsi)/(sigma_sq))/((sigma_sq))),
FUN = "*"), uHvar[, -1])
hessll[(nXvar + 1):(nXvar + (nuZUvar - 1)), 1:nXvar] <- t(hessll[1:nXvar,
(nXvar + 1):(nXvar + (nuZUvar - 1))])
hessll[1:nXvar, nXvar + (nuZUvar - 1) + 1] <- hessll[nXvar +
(nuZUvar - 1) + 1, 1:nXvar] <- (-(S * ((0 - 1) + ((muwvwu)/(pmusigx2) +
dmusigwu * exp(Wvsca)/(pmusigx2)^2) * dmusig/(sigma_sq)) *
exp(Hsca)/(sigma_sq))) %*% Xvar
hessll[1:nXvar, nXvar + (nuZUvar - 1) + 2] <- hessll[nXvar +
(nuZUvar - 1) + 2, 1:nXvar] <- (S * (sigx9 - (((sigx6)/(sigx2)^2 -
(sigx7) * dmusig/((sigma_sq) * pmusigx2)) * exp(Wusca) -
((sigx7) * (muwvwu)/exp(Wvsca) + 1/sigmastar)/(sigma_sq)) *
dpmusig) * exp(Wusca)) %*% Xvar
hessll[1:nXvar, (nXvar + (nuZUvar - 1) + 2 + 1):(nXvar + (nuZUvar -
1) + 2 + nvZVvar)] <- crossprod(sweep(Xvar, MARGIN = 1,
STATS = S * (sigx9 - ((sigx12) * exp(Wusca) + (muwvwu) *
(sigx8)/((sigma_sq) * exp(Wvsca))) * dpmusig) * exp(Wvsca),
FUN = "*"), vHvar)
hessll[(nXvar + (nuZUvar - 1) + 2 + 1):(nXvar + (nuZUvar -
1) + 2 + nvZVvar), 1:nXvar] <- t(hessll[1:nXvar, (nXvar +
(nuZUvar - 1) + 2 + 1):(nXvar + (nuZUvar - 1) + 2 + nvZVvar)])
hessll[(nXvar + 1):(nXvar + (nuZUvar - 1)), (nXvar + 1):(nXvar +
(nuZUvar - 1))] <- crossprod(sweep(matrix(uHvar[, -1],
ncol = (nuZUvar - 1)), MARGIN = 1, STATS = (((muwv - ((sigx15)^2 *
(muwvwu) + 4 * (S * exp(Wusca) * (epsilon))))/(sigx2) -
((((2 - 2 * (wusq)) * (wusq - 0.5 * (0.5 * (2 - 2 * (wusq)) +
2 * (wusq))) * exp(Wvsca)/sigmastar + 2 * (sigx4)) *
(muwvwu) + (sigx4) * (2 * (muwv) - (2 * ((sigx4) *
sigx2 * mustar3) + 4 * (S * (epsilon))) * exp(Wusca))) *
exp(Wusca)/(sigx2)^2 + (sigx15)^2 * dpmusig)) * dpmusig -
((((dmustar2 * (muepsi) * (muepsix2)^2/dmustar2 - ((2 -
2 * (wusq)) * (muepsi) + musca) * exp(Wusca))/(sigma_sq) +
musca) * (muepsi) + (musca - (muepsi)^2 * (muepsix2)/(sigma_sq)) *
(muepsix2)) + (2 - 2 * ((dmustar2 * (muepsi) * (muepsix2)/dmustar2 +
exp(Wusca))/(sigma_sq))) * exp(Wusca))/(sigma_sq)),
FUN = "*"), uHvar[, -1])
hessll[(nXvar + 1):(nXvar + (nuZUvar - 1)), nXvar + (nuZUvar -
1) + 1] <- hessll[nXvar + (nuZUvar - 1) + 1, (nXvar +
1):(nXvar + (nuZUvar - 1))] <- (((((1/(pmusigx2) - ((sigx15) *
dmusig * sigmastar + 0.5 * ((2 - 2 * (wusq)) * exp(Wusca) *
exp(Wvsca) * pmusig/(sigx2)))/(pmusigx2)^2) * exp(Wvsca) -
(sigx15) * (muwvwu)/(exp(Wusca) * pmusig)) * dmusig -
((2 * (musca) + S * (epsilon)) + 2 * ((dmusigwv/(pmusigx2) -
dmustar2 * (muepsi)/dmustar2) * wusq)))/(sigma_sq) +
dmu * (wupmu/(wupmu)^2 - 1/(wupmu))) * exp(Hsca)) %*%
uHvar[, -1]
hessll[(nXvar + 1):(nXvar + (nuZUvar - 1)), nXvar + (nuZUvar -
1) + 2] <- hessll[nXvar + (nuZUvar - 1) + 2, (nXvar +
1):(nXvar + (nuZUvar - 1))] <- (((sigx10 + 2 * (sigx3 -
(sigx7) * dpmusig) - (((sigx6) * (muwv - (2 * ((sigx4) *
sigx2 * mustar3) + 2 * (S * (epsilon))) * exp(Wusca)) +
(0.5 * (wusq) - 0.5 * (0.5 * (1 - wusq) + wusq)) * (2 -
2 * (wusq)) * exp(Wvsca) * (muwvwu)/sigmastar - S *
(sigx4) * exp(Wusca) * (epsilon))/(sigx2)^2 - (sigx7) *
(sigx15) * (sigx16)) * dpmusig) * exp(Wusca) + 0.5 *
(tau * (1/(wupmu) - wupmu/(wupmu)^2) * dmu * exp(Hsca)))) %*%
uHvar[, -1]
hessll[(nXvar + 1):(nXvar + (nuZUvar - 1)), (nXvar + (nuZUvar -
1) + 2 + 1):(nXvar + (nuZUvar - 1) + 2 + nvZVvar)] <- crossprod(sweep(matrix(uHvar[,
-1], ncol = (nuZUvar - 1)), MARGIN = 1, STATS = (sigx10 +
dmusig * (tau * (1/(sigx2) - (sigx4) * exp(Wusca)/(sigx2)^2) *
exp(Hsca) - (((0.5 * ((1 - wvsq) * (2 - 0.5 * (2 -
2 * (wusq))) + 2 * (exp(Wusca) * wvsq/(sigma_sq))) +
0.5 * ((2 - 2 * (wusq)) * wvsq)) * exp(Wusca) * (muwvwu)/sigmastar +
(sigx5) * (muwv - (2 * ((sigx4) * sigx2 * mustar3) +
2 * (S * (epsilon))) * exp(Wusca)))/(sigx2)^2 +
(sigx15) * (sigx16) * (sigx8)))/pmusig) * exp(Wvsca),
FUN = "*"), vHvar)
hessll[(nXvar + (nuZUvar - 1) + 2 + 1):(nXvar + (nuZUvar -
1) + 2 + nvZVvar), (nXvar + 1):(nXvar + (nuZUvar - 1))] <- t(hessll[(nXvar +
1):(nXvar + (nuZUvar - 1)), (nXvar + (nuZUvar - 1) + 2 +
1):(nXvar + (nuZUvar - 1) + 2 + nvZVvar)])
hessll[nXvar + (nuZUvar - 1) + 1, nXvar + (nuZUvar - 1) + 1] <- sum((dmu *
(dmu/(wupmu)^2 + musca/(exp((Wusca)/2)^3 * pmu)) - (((dmustar2/dmustar2 -
1) * (muepsi)^2/(sigma_sq) + 1) + ((muwvwu)/(exp(Wusca) *
pmusigx2) + dmusigwv/(pmusigx2)^2) * dmusig * wvsq)/(sigma_sq)) *
exp(Hsca)^2)
hessll[nXvar + (nuZUvar - 1) + 1, nXvar + (nuZUvar - 1) + 2] <- hessll[nXvar +
(nuZUvar - 1) + 2, nXvar + (nuZUvar - 1) + 1] <- sum(((sigx11 -
((sigx6) * exp(Wvsca)/(sigx2)^2 - (sigx7) * ((muwvwu)/exp(Wusca) +
dmusigwv/(pmusigx2))/(sigma_sq)) * dpmusig) * exp(Wusca) +
0.5 * (((1 - tau^2 * exp(Hsca)^2/exp((Wusca)/2)^2)/(wupmu) -
tau * dmu * exp(Hsca)/(wupmu)^2) * dmu)) * exp(Hsca))
hessll[nXvar + (nuZUvar - 1) + 1, (nXvar + (nuZUvar - 1) +
2 + 1):(nXvar + (nuZUvar - 1) + 2 + nvZVvar)] <- hessll[(nXvar +
(nuZUvar - 1) + 2 + 1):(nXvar + (nuZUvar - 1) + 2 + nvZVvar),
nXvar + (nuZUvar - 1) + 1] <- ((((1/sigmastar - (muwvwu) *
(sigx8)/exp(Wusca))/(sigma_sq) - (sigx12) * exp(Wvsca)) *
dpmusig + sigx11) * exp(Hsca) * exp(Wvsca)) %*% vHvar
hessll[nXvar + (nuZUvar - 1) + 2, nXvar + (nuZUvar - 1) + 2] <- sum(((sigx13 *
exp(Wusca) + sigx14 - 0.5)/(sigma_sq) - (((sigx6) * (muwv -
(2 * ((sigx6) * sigx2 * mustar3) + 3 * (S * (epsilon))) *
exp(Wusca)) + (0.5 * (wusq) - 0.5 * (0.5 * (1 - wusq) +
wusq)) * (1 - wusq) * exp(Wvsca) * (muwvwu)/sigmastar)/(sigx2)^2 +
(sigx7)^2 * (sigx16) * exp(Wusca) + S * (epsilon)/(sigx2)) *
dpmusig) * exp(Wusca) + 0.5 * (tau * (0.5 * (tau^2 *
exp(Hsca)^2/(exp((Wusca)/2)^3 * pmu)) - (0.5 * (wupmu) -
0.5 * (tau * dmu * exp(Hsca)))/(wupmu)^2) * dmu * exp(Hsca)))
hessll[nXvar + (nuZUvar - 1) + 2, (nXvar + (nuZUvar - 1) +
2 + 1):(nXvar + (nuZUvar - 1) + 2 + nvZVvar)] <- hessll[(nXvar +
(nuZUvar - 1) + 2 + 1):(nXvar + (nuZUvar - 1) + 2 + nvZVvar),
nXvar + (nuZUvar - 1) + 2] <- ((((sigx7) * (sigx16) *
(sigx8) - ((0.5 * ((1 - wusq) * wvsq) + 0.5 * ((wusq -
1) * wvsq + 1 - 0.5 * ((1 - wusq) * (1 - wvsq)))) * (muwvwu)/sigmastar +
tau * (sigx6) * exp(Hsca) - (sigx5) * (2 * ((sigx6) *
sigx2 * mustar3) + S * (epsilon)))/(sigx2)^2) * dpmusig +
sigx13/(sigma_sq)) * exp(Wusca) * exp(Wvsca)) %*% vHvar
hessll[(nXvar + (nuZUvar - 1) + 2 + 1):(nXvar + (nuZUvar -
1) + 2 + nvZVvar), (nXvar + (nuZUvar - 1) + 2 + 1):(nXvar +
(nuZUvar - 1) + 2 + nvZVvar)] <- crossprod(sweep(vHvar,
MARGIN = 1, STATS = ((sigx13 * exp(Wvsca) + sigx14 -
0.5)/(sigma_sq) + dmusig * (musca/(sigx2) - ((((3 *
(musca) - 2 * ((sigx5) * sigx2 * mustar3)) * exp(Wvsca) -
S * exp(Wusca) * (epsilon)) * (sigx5) + (0.5 * (wvsq) -
0.5 * (0.5 * (1 - wvsq) + wvsq)) * (1 - wvsq) * exp(Wusca) *
(muwvwu)/sigmastar)/(sigx2)^2 + (sigx16) * exp(Wvsca) *
(sigx8)^2))/pmusig) * exp(Wvsca), FUN = "*"), vHvar)
hessll[lower.tri(hessll)] <- t(hessll)[lower.tri(hessll)]
# hessll <- (hessll + (hessll))/2
return(hessll)
}
# Optimization using different algorithms ----------
truncnormscalAlgOpt <- function(start, olsParam, dataTable, S,
nXvar, uHvar, nuZUvar, vHvar, nvZVvar, Yvar, Xvar, method,
printInfo, itermax, stepmax, tol, gradtol, hessianType, qac) {
startVal <- if (!is.null(start))
start else csttruncnormscal(olsObj = olsParam, epsiRes = dataTable[["olsResiduals"]],
S = S, uHvar = uHvar, nuZUvar = nuZUvar, vHvar = vHvar,
nvZVvar = nvZVvar)
startLoglik <- sum(ctruncnormscalike(startVal, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar, vHvar = vHvar,
Yvar = Yvar, Xvar = Xvar, S = S))
if (method %in% c("bfgs", "bhhh", "nr", "nm")) {
maxRoutine <- switch(method, bfgs = function(...) maxBFGS(...),
bhhh = function(...) maxBHHH(...), nr = function(...) maxNR(...),
nm = function(...) maxNM(...))
method <- "maxLikAlgo"
}
mleObj <- switch(method, ucminf = ucminf(par = startVal,
fn = function(parm) -sum(ctruncnormscalike(parm, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S)),
gr = function(parm) -colSums(cgradtruncnormscalike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S)), hessian = 0, control = list(trace = if (printInfo) 1 else 0,
maxeval = itermax, stepmax = stepmax, xtol = tol,
grtol = gradtol)), maxLikAlgo = maxRoutine(fn = ctruncnormscalike,
grad = cgradtruncnormscalike, hess = chesstruncnormscalike,
start = startVal, finalHessian = if (hessianType == 2) "bhhh" else TRUE,
control = list(printLevel = if (printInfo) 2 else 0,
iterlim = itermax, reltol = tol, tol = tol, qac = qac),
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S), sr1 = trust.optim(x = startVal,
fn = function(parm) -sum(ctruncnormscalike(parm, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S)),
gr = function(parm) -colSums(cgradtruncnormscalike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S)), method = "SR1", control = list(maxit = itermax,
cgtol = gradtol, stop.trust.radius = tol, prec = tol,
report.level = if (printInfo) 2 else 0, report.precision = 1L)),
sparse = trust.optim(x = startVal, fn = function(parm) -sum(ctruncnormscalike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S)), gr = function(parm) -colSums(cgradtruncnormscalike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S)), hs = function(parm) as(-chesstruncnormscalike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S), "dgCMatrix"), method = "Sparse", control = list(maxit = itermax,
cgtol = gradtol, stop.trust.radius = tol, prec = tol,
report.level = if (printInfo) 2 else 0, report.precision = 1L,
preconditioner = 1L)), mla = mla(b = startVal, fn = function(parm) -sum(ctruncnormscalike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S)), gr = function(parm) -colSums(cgradtruncnormscalike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S)), hess = function(parm) -chesstruncnormscalike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S), print.info = printInfo, maxiter = itermax,
epsa = gradtol, epsb = gradtol), nlminb = nlminb(start = startVal,
objective = function(parm) -sum(ctruncnormscalike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S)), gradient = function(parm) -colSums(cgradtruncnormscalike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S)), hessian = function(parm) -chesstruncnormscalike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S), control = list(iter.max = itermax, trace = if (printInfo) 1 else 0,
eval.max = itermax, rel.tol = tol, x.tol = tol)))
if (method %in% c("ucminf", "nlminb")) {
mleObj$gradient <- colSums(cgradtruncnormscalike(mleObj$par,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S))
}
mlParam <- if (method %in% c("ucminf", "nlminb")) {
mleObj$par
} else {
if (method == "maxLikAlgo") {
mleObj$estimate
} else {
if (method %in% c("sr1", "sparse")) {
names(mleObj$solution) <- names(startVal)
mleObj$solution
} else {
if (method == "mla") {
mleObj$b
}
}
}
}
if (hessianType != 2) {
if (method %in% c("ucminf", "nlminb"))
mleObj$hessian <- chesstruncnormscalike(parm = mleObj$par,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S)
if (method == "sr1")
mleObj$hessian <- chesstruncnormscalike(parm = mleObj$solution,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S)
}
mleObj$logL_OBS <- ctruncnormscalike(parm = mlParam, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar, vHvar = vHvar,
Yvar = Yvar, Xvar = Xvar, S = S)
mleObj$gradL_OBS <- cgradtruncnormscalike(parm = mlParam,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S)
return(list(startVal = startVal, startLoglik = startLoglik,
mleObj = mleObj, mlParam = mlParam))
}
# Conditional efficiencies estimation ----------
ctruncnormscaleff <- function(object, level) {
beta <- object$mlParam[1:(object$nXvar)]
delta <- object$mlParam[(object$nXvar + 1):(object$nXvar +
(object$nuZUvar - 1))]
tau <- object$mlParam[object$nXvar + (object$nuZUvar - 1) +
1]
cu <- object$mlParam[object$nXvar + (object$nuZUvar - 1) +
2]
phi <- object$mlParam[(object$nXvar + (object$nuZUvar - 1) +
2 + 1):(object$nXvar + (object$nuZUvar - 1) + 2 + object$nvZVvar)]
Xvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 1)
uHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 3)
vHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 4)
musca <- exp(as.numeric(crossprod(matrix(delta), t(uHvar[,
-1])))) * tau
Wusca <- cu + 2 * as.numeric(crossprod(matrix(delta), t(uHvar[,
-1])))
Wvsca <- as.numeric(crossprod(matrix(phi), t(vHvar)))
epsilon <- model.response(model.frame(object$formula, data = object$dataTable)) -
as.numeric(crossprod(matrix(beta), t(Xvar)))
mustar <- (musca * exp(Wvsca) - exp(Wusca) * object$S * epsilon)/(exp(Wusca) +
exp(Wvsca))
sigmastar <- sqrt(exp(Wusca) * exp(Wvsca)/(exp(Wusca) + exp(Wvsca)))
u <- mustar + sigmastar * dnorm(mustar/sigmastar)/pnorm(mustar/sigmastar)
uLB <- mustar + qnorm(1 - (1 - (1 - level)/2) * (1 - pnorm(-mustar/sigmastar))) *
sigmastar
uUB <- mustar + qnorm(1 - (1 - level)/2 * (1 - pnorm(-mustar/sigmastar))) *
sigmastar
if (object$logDepVar == TRUE) {
teJLMS <- exp(-u)
m <- ifelse(mustar > 0, mustar, 0)
teMO <- exp(-m)
teBC <- exp(-mustar + 1/2 * sigmastar^2) * pnorm(mustar/sigmastar -
sigmastar)/pnorm(mustar/sigmastar)
teBCLB <- exp(-uUB)
teBCUB <- exp(-uLB)
res <- bind_cols(u = u, uLB = uLB, uUB = uUB, teJLMS = teJLMS,
m = m, teMO = teMO, teBC = teBC, teBCLB = teBCLB,
teBCUB = teBCUB)
} else {
res <- bind_cols(u = u, uLB = uLB, uUB = uUB, m = m)
}
return(res)
}
# Marginal effects on inefficiencies ----------
cmargtruncnormscal_Eu <- function(object) {
delta <- object$mlParam[(object$nXvar + 1):(object$nXvar +
(object$nuZUvar - 1))]
tau <- object$mlParam[object$nXvar + (object$nuZUvar - 1) +
1]
cu <- object$mlParam[object$nXvar + (object$nuZUvar - 1) +
2]
uHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 3)
hi <- exp(as.numeric(crossprod(matrix(delta), t(uHvar[, -1]))))
Lambda <- tau/exp(cu/2)
m1 <- exp(cu/2) * (Lambda + dnorm(Lambda)/pnorm(Lambda))
margEff <- kronecker(matrix(delta, nrow = 1), matrix(m1 *
hi, ncol = 1))
colnames(margEff) <- paste0("Eu_", colnames(uHvar)[-1])
return(margEff)
}
cmargtruncnormscal_Vu <- function(object) {
delta <- object$mlParam[(object$nXvar + 1):(object$nXvar +
(object$nuZUvar - 1))]
tau <- object$mlParam[object$nXvar + (object$nuZUvar - 1) +
1]
cu <- object$mlParam[object$nXvar + (object$nuZUvar - 1) +
2]
uHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 3)
hi2 <- exp(2 * as.numeric(crossprod(matrix(delta), t(uHvar[,
-1]))))
Lambda <- tau/exp(cu/2)
m2 <- exp(cu) * (1 - Lambda * dnorm(Lambda)/pnorm(Lambda) -
(dnorm(Lambda)/pnorm(Lambda))^2)
margEff <- kronecker(matrix(2 * delta, nrow = 1), matrix(m2 *
hi2))
colnames(margEff) <- paste0("Vu_", colnames(uHvar)[-1])
return(margEff)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.