Nothing
########################################################
# #
# truncated normal + normal distributions #
# #
# #
########################################################
# Log-likelihood ----------
ctruncnormlike <- function(parm, nXvar, nmuZUvar, nuZUvar, nvZVvar,
muHvar, uHvar, vHvar, Yvar, Xvar, S) {
beta <- parm[1:(nXvar)]
omega <- parm[(nXvar + 1):(nXvar + nmuZUvar)]
delta <- parm[(nXvar + nmuZUvar + 1):(nXvar + nmuZUvar + nuZUvar)]
phi <- parm[(nXvar + nmuZUvar + nuZUvar + 1):(nXvar + nmuZUvar +
nuZUvar + nvZVvar)]
mu <- as.numeric(crossprod(matrix(omega), t(muHvar)))
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
epsilon <- Yvar - as.numeric(crossprod(matrix(beta), t(Xvar)))
mustar <- (mu * exp(Wv) - exp(Wu) * S * epsilon)/(exp(Wu) +
exp(Wv))
sigmastar <- sqrt(exp(Wu) * exp(Wv)/(exp(Wu) + exp(Wv)))
ll <- (-1/2 * log(exp(Wu) + exp(Wv)) + dnorm((mu + S * epsilon)/sqrt(exp(Wu) +
exp(Wv)), log = TRUE) + pnorm(mustar/sigmastar, log.p = TRUE) -
pnorm(mu/sqrt(exp(Wu)), log.p = TRUE))
return(ll)
}
# starting value for the log-likelihood ----------
csttruncnorm <- function(olsObj, epsiRes, S, nmuZUvar, nuZUvar,
uHvar, muHvar, nvZVvar, vHvar) {
m2 <- moment(epsiRes, order = 2)
m3 <- moment(epsiRes, order = 3)
if (S * m3 > 0) {
## Coelli (1995) suggests 0.05 for gamma
varu <- (abs(S * m3 * sqrt(pi/2)/(1 - 4/pi)))^(2/3)
} else {
varu <- (S * m3 * sqrt(pi/2)/(1 - 4/pi))^(2/3)
}
if (m2 < (pi - 2)/pi * varu) {
varv <- abs(m2 - (1 - 2/pi) * varu)
} else {
varv <- m2 - (1 - 2/pi) * varu
}
dep_u <- 1/2 * log(((epsiRes^2 - varv) * pi/(pi - 2))^2)
dep_v <- 1/2 * log((epsiRes^2 - (1 - 2/pi) * varu)^2)
reg_hetu <- if (nuZUvar == 1) {
lm(log(varu) ~ 1)
} else {
lm(dep_u ~ ., data = as.data.frame(uHvar[, 2:nuZUvar]))
}
if (any(is.na(reg_hetu$coefficients)))
stop("At least one of the OLS coefficients of 'uhet' is NA: ",
paste(colnames(uHvar)[is.na(reg_hetu$coefficients)],
collapse = ", "), ". This may be due to a singular matrix due to potential perfect multicollinearity",
call. = FALSE)
reg_hetv <- if (nvZVvar == 1) {
lm(log(varv) ~ 1)
} else {
lm(dep_v ~ ., data = as.data.frame(vHvar[, 2:nvZVvar]))
}
if (any(is.na(reg_hetv$coefficients)))
stop("at least one of the OLS coefficients of 'vhet' is NA: ",
paste(colnames(vHvar)[is.na(reg_hetv$coefficients)],
collapse = ", "), ". This may be due to a singular matrix due to potential perfect multicollinearity",
call. = FALSE)
reg_hetmu <- if (nmuZUvar == 1) {
lm(epsiRes ~ 1)
} else {
lm(epsiRes ~ ., data = as.data.frame(muHvar[, 2:nmuZUvar]))
}
if (any(is.na(reg_hetmu$coefficients)))
stop("at least one of the OLS coefficients of 'muhet' is NA: ",
paste(colnames(muHvar)[is.na(reg_hetmu$coefficients)],
collapse = ", "), ". This may be due to a singular matrix due to potential perfect multicollinearity",
call. = FALSE)
delta <- coefficients(reg_hetu)
names(delta) <- paste0("Zu_", colnames(uHvar))
phi <- coefficients(reg_hetv)
names(phi) <- paste0("Zv_", colnames(vHvar))
omega <- coefficients(reg_hetmu)
names(omega) <- paste0("Zmu_", colnames(muHvar))
if (names(olsObj)[1] == "(Intercept)") {
beta <- c(olsObj[1] + S * sqrt(varu * 2/pi), olsObj[-1])
} else {
beta <- olsObj
}
return(c(beta, omega, delta, phi))
}
# Gradient of the likelihood function ----------
cgradtruncnormlike <- function(parm, nXvar, nmuZUvar, nuZUvar,
nvZVvar, muHvar, uHvar, vHvar, Yvar, Xvar, S) {
beta <- parm[1:(nXvar)]
omega <- parm[(nXvar + 1):(nXvar + nmuZUvar)]
delta <- parm[(nXvar + nmuZUvar + 1):(nXvar + nmuZUvar + nuZUvar)]
phi <- parm[(nXvar + nmuZUvar + nuZUvar + 1):(nXvar + nmuZUvar +
nuZUvar + nvZVvar)]
mu <- as.numeric(crossprod(matrix(omega), t(muHvar)))
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
epsilon <- Yvar - as.numeric(crossprod(matrix(beta), t(Xvar)))
sigma_sq <- exp(Wu) + exp(Wv)
mustar <- (mu * exp(Wv) - exp(Wu) * S * epsilon)/(sigma_sq)
sigmastar <- sqrt(exp(Wu) * exp(Wv)/(sigma_sq))
musig <- mustar/sigmastar
pmusig <- pnorm(musig)
dmusig <- dnorm(musig)
mustar2 <- (mu + S * (epsilon))/sqrt(sigma_sq)
dmustar2 <- dnorm(mustar2)
dmustar2epsi <- dmustar2 * (mu + S * (epsilon))^2
dmustar2epsix2 <- dmustar2epsi/(dmustar2 * (sigma_sq))
dmustar2epsix3 <- (0.5 * (dmustar2epsix2) - 0.5)/(sigma_sq)
sigx2 <- (sigma_sq) * sigmastar
sigx3 <- 0.5 * ((1 - exp(Wv)/(sigma_sq)) * exp(Wu)/sigmastar) +
sigmastar
wusq <- exp(Wu)/(sigma_sq)
sigx4 <- (mu * exp(Wv) - S * exp(Wu) * (epsilon))/(sigx2)^2
sigx5 <- (0.5 * ((1 - wusq) * exp(Wv)/sigmastar) + sigmastar) *
sigx4
sigx6 <- sigx5 + S * (epsilon)/(sigx2)
mustar3 <- mu + S * (epsilon)
dmu <- dnorm(mu/exp(Wu/2))
pmu <- pnorm(mu/exp(Wu/2))
sigmu <- mu/(sigx2) - (sigx3) * sigx4
pmusigx2 <- pmusig * sigmastar
pmuwu <- exp(Wu/2) * pmu
gradll <- (cbind(sweep(Xvar, MARGIN = 1, STATS = S * (dmusig *
exp(Wu)/(pmusigx2) + (mustar3))/(sigma_sq), FUN = "*"),
sweep(muHvar, MARGIN = 1, STATS = ((dmusig * exp(Wv)/(pmusigx2) -
(mustar3))/(sigma_sq) - dmu/(pmuwu)), FUN = "*"),
sweep(uHvar, MARGIN = 1, STATS = ((dmustar2epsix3 - (sigx6) *
dmusig/pmusig) * exp(Wu) + 0.5 * (mu * dmu/(pmuwu))),
FUN = "*"), sweep(vHvar, MARGIN = 1, STATS = (dmustar2epsix3 +
dmusig * (sigmu)/pmusig) * exp(Wv), FUN = "*")))
return(gradll)
}
# Hessian of the likelihood function ----------
chesstruncnormlike <- function(parm, nXvar, nmuZUvar, nuZUvar,
nvZVvar, muHvar, uHvar, vHvar, Yvar, Xvar, S) {
beta <- parm[1:(nXvar)]
omega <- parm[(nXvar + 1):(nXvar + nmuZUvar)]
delta <- parm[(nXvar + nmuZUvar + 1):(nXvar + nmuZUvar + nuZUvar)]
phi <- parm[(nXvar + nmuZUvar + nuZUvar + 1):(nXvar + nmuZUvar +
nuZUvar + nvZVvar)]
mu <- as.numeric(crossprod(matrix(omega), t(muHvar)))
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
epsilon <- Yvar - as.numeric(crossprod(matrix(beta), t(Xvar)))
sigma_sq <- exp(Wu) + exp(Wv)
mustar <- (mu * exp(Wv) - exp(Wu) * S * epsilon)/(sigma_sq)
sigmastar <- sqrt(exp(Wu) * exp(Wv)/(sigma_sq))
musig <- mustar/sigmastar
pmusig <- pnorm(musig)
dmusig <- dnorm(musig)
mustar2 <- (mu + S * (epsilon))/sqrt(sigma_sq)
dmustar2 <- dnorm(mustar2)
dmustar2epsi <- dmustar2 * (mu + S * (epsilon))^2
dmustar2epsix2 <- dmustar2epsi/(dmustar2 * (sigma_sq))
dmustar2epsix3 <- (0.5 * (dmustar2epsix2) - 0.5)/(sigma_sq)
sigx2 <- (sigma_sq) * sigmastar
sigx3 <- 0.5 * ((1 - exp(Wv)/(sigma_sq)) * exp(Wu)/sigmastar) +
sigmastar
wusq <- exp(Wu)/(sigma_sq)
sigx4 <- (mu * exp(Wv) - S * exp(Wu) * (epsilon))/(sigx2)^2
sigx5 <- (0.5 * ((1 - wusq) * exp(Wv)/sigmastar) + sigmastar) *
sigx4
sigx6 <- sigx5 + S * (epsilon)/(sigx2)
mustar3 <- mu + S * (epsilon)
dmu <- dnorm(mu/exp(Wu/2))
pmu <- pnorm(mu/exp(Wu/2))
sigmu <- mu/(sigx2) - (sigx3) * sigx4
pmusigx2 <- pmusig * sigmastar
pmuwu <- exp(Wu/2) * pmu
dmusqx2 <- (dmustar2 * (sigma_sq))^2
dmustar2epsix2sq <- dmustar2epsi/dmusqx2
sigx7 <- 0.5 * ((((mustar3)^2/(sigma_sq) - 2)/(dmustar2 *
(sigma_sq)) - dmustar2epsix2sq) * dmustar2 * (mustar3)/(sigma_sq))
sigx8 <- 0.5 * (((2 - (mustar3)^2/(sigma_sq))/(dmustar2 *
(sigma_sq)) + dmustar2epsix2sq) * dmustar2 * (mustar3)/(sigma_sq))
muwuepsi <- mu * exp(Wv) - S * exp(Wu) * (epsilon)
sigx9 <- (muwuepsi)/(sigx2) + dmusig/pmusig
sigx10 <- 0.5 * ((1 - wusq) * exp(Wv)/sigmastar) + sigmastar
sigx11 <- (sigma_sq) * (muwuepsi) * sigmastar/(sigx2)^2
sigmustar <- (muwuepsi)/sigmastar
sigx12 <- 0.5 * (dmustar2epsi/(sigma_sq)) + dmustar2
wvsq <- exp(Wv)/(sigma_sq)
sigx13 <- ((0.5 * ((0.5 * ((mustar3)^2/(dmustar2 * (sigma_sq)^3)) -
(sigx12)/dmusqx2) * dmustar2epsi) - dmustar2epsix3) *
exp(Wu) + 0.5 * (dmustar2epsix2) - 0.5)/(sigma_sq)
sigx14 <- ((sigx3)/(sigx2)^2 + dmusig * (sigmu)/((sigma_sq) *
pmusigx2))
sigx15 <- ((0.5 * ((0.5 * ((mustar3)^2/(dmustar2 * (sigma_sq)^3)) -
(sigx12)/dmusqx2) * dmustar2epsi) - dmustar2epsix3) *
exp(Wv) + 0.5 * (dmustar2epsix2) - 0.5)/(sigma_sq)
hessll <- matrix(nrow = nXvar + nmuZUvar + nuZUvar + nvZVvar,
ncol = nXvar + nmuZUvar + nuZUvar + nvZVvar)
hessll[1:nXvar, 1:nXvar] <- crossprod(sweep(Xvar, MARGIN = 1,
STATS = S^2 * ((0 - 1) - ((muwuepsi)/(exp(Wv) * pmusigx2) +
dmusig * exp(Wu)/(pmusigx2)^2) * dmusig * wusq)/(sigma_sq),
FUN = "*"), Xvar)
hessll[1:nXvar, (nXvar + 1):(nXvar + nmuZUvar)] <- crossprod(sweep(Xvar,
MARGIN = 1, STATS = -(S * ((0 - 1) + ((muwuepsi)/(pmusigx2) +
dmusig * exp(Wu) * exp(Wv)/(pmusigx2)^2) * dmusig/(sigma_sq))/(sigma_sq)),
FUN = "*"), muHvar)
hessll[1:nXvar, (nXvar + nmuZUvar + 1):(nXvar + nmuZUvar +
nuZUvar)] <- crossprod(sweep(Xvar, MARGIN = 1, STATS = S *
(sigx7 - (((sigx10)/(sigx2)^2 - (sigx6) * dmusig/((sigma_sq) *
pmusigx2)) * exp(Wu) - ((sigx6) * (muwuepsi)/exp(Wv) +
1/sigmastar)/(sigma_sq)) * dmusig/pmusig) * exp(Wu),
FUN = "*"), uHvar)
hessll[1:nXvar, (nXvar + nmuZUvar + nuZUvar + 1):(nXvar + nmuZUvar +
nuZUvar + nvZVvar)] <- crossprod(sweep(Xvar, MARGIN = 1,
STATS = S * (sigx7 - (sigx14 * exp(Wu) + (muwuepsi) *
(sigmu)/((sigma_sq) * exp(Wv))) * dmusig/pmusig) *
exp(Wv), FUN = "*"), vHvar)
hessll[(nXvar + 1):(nXvar + nmuZUvar), (nXvar + 1):(nXvar +
nmuZUvar)] <- crossprod(sweep(muHvar, MARGIN = 1, STATS = (dmu *
(dmu/(pmuwu)^2 + mu/(exp(Wu/2)^3 * pmu)) - ((0 + 1) +
((muwuepsi)/(exp(Wu) * pmusigx2) + dmusig * exp(Wv)/(pmusigx2)^2) *
dmusig * wvsq)/(sigma_sq)), FUN = "*"), muHvar)
hessll[(nXvar + nmuZUvar + 1):(nXvar + nmuZUvar + nuZUvar),
(nXvar + nmuZUvar + 1):(nXvar + nmuZUvar + nuZUvar)] <- crossprod(sweep(uHvar,
MARGIN = 1, STATS = ((sigx13 - (((sigx10) * (mu * exp(Wv) -
(2 * ((sigx10) * sigx11) + 3 * (S * (epsilon))) *
exp(Wu)) + (0.5 * (wusq) - 0.5 * (0.5 * (1 -
wusq) + wusq)) * (1 - wusq) * exp(Wv) * sigmustar)/(sigx2)^2 +
(sigx6)^2 * (sigx9) * exp(Wu) + S * (epsilon)/(sigx2)) *
dmusig/pmusig) * exp(Wu) + 0.5 * (mu * (0.5 * (mu^2/(exp(Wu/2)^3 *
pmu)) - (0.5 * (pmuwu) - 0.5 * (mu * dmu))/(pmuwu)^2) *
dmu)), FUN = "*"), uHvar)
hessll[(nXvar + nmuZUvar + nuZUvar + 1):(nXvar + nmuZUvar +
nuZUvar + nvZVvar), (nXvar + nmuZUvar + nuZUvar + 1):(nXvar +
nmuZUvar + nuZUvar + nvZVvar)] <- crossprod(sweep(vHvar,
MARGIN = 1, STATS = (sigx15 + dmusig * (mu/(sigx2) -
((((3 * (mu) - 2 * ((sigx3) * (sigma_sq) * (muwuepsi) *
sigmastar/(sigx2)^2)) * exp(Wv) - S * exp(Wu) *
(epsilon)) * (sigx3) + (0.5 * (exp(Wv)/(sigma_sq)) -
0.5 * (0.5 * (1 - exp(Wv)/(sigma_sq)) + exp(Wv)/(sigma_sq))) *
(1 - exp(Wv)/(sigma_sq)) * exp(Wu) * (muwuepsi)/sigmastar)/(sigx2)^2 +
(sigx9) * exp(Wv) * (mu/(sigx2) - (sigx3) * (muwuepsi)/(sigx2)^2)^2))/pmusig) *
exp(Wv), FUN = "*"), vHvar)
hessll[(nXvar + 1):(nXvar + nmuZUvar), (nXvar + nmuZUvar +
1):(nXvar + nmuZUvar + nuZUvar)] <- crossprod(sweep(muHvar,
MARGIN = 1, STATS = ((sigx8 - ((sigx10) * exp(Wv)/(sigx2)^2 -
(sigx6) * ((muwuepsi)/exp(Wu) + dmusig * exp(Wv)/(pmusigx2))/(sigma_sq)) *
dmusig/pmusig) * exp(Wu) + 0.5 * (((1 - mu^2/exp(Wu/2)^2)/(pmuwu) -
mu * dmu/(pmuwu)^2) * dmu)), FUN = "*"), uHvar)
hessll[(nXvar + 1):(nXvar + nmuZUvar), (nXvar + nmuZUvar +
nuZUvar + 1):(nXvar + nmuZUvar + nuZUvar + nvZVvar)] <- crossprod(sweep(muHvar,
MARGIN = 1, STATS = (((1/sigmastar - (muwuepsi) * (sigmu)/exp(Wu))/(sigma_sq) -
sigx14 * exp(Wv)) * dmusig/pmusig + sigx8) * exp(Wv),
FUN = "*"), vHvar)
hessll[(nXvar + nmuZUvar + 1):(nXvar + nmuZUvar + nuZUvar),
(nXvar + nmuZUvar + nuZUvar + 1):(nXvar + nmuZUvar + nuZUvar +
nvZVvar)] <- crossprod(sweep(uHvar, MARGIN = 1, STATS = (((sigx6) *
(sigx9) * (sigmu) - ((0.5 * ((1 - wusq) * wvsq) + 0.5 *
((wusq - 1) * wvsq + 1 - 0.5 * ((1 - wusq) * (1 - wvsq)))) *
sigmustar + mu * (sigx10) - (sigx3) * (2 * ((sigx10) *
sigx11) + S * (epsilon)))/(sigx2)^2) * dmusig/pmusig +
(0.5 * ((0.5 * ((mustar3)^2/(dmustar2 * (sigma_sq)^3)) -
(sigx12)/dmusqx2) * dmustar2epsi) - dmustar2epsix3)/(sigma_sq)) *
exp(Wu) * exp(Wv), FUN = "*"), vHvar)
hessll[lower.tri(hessll)] <- t(hessll)[lower.tri(hessll)]
# hessll <- (hessll + (hessll))/2
return(hessll)
}
# Optimization using different algorithms ----------
truncnormAlgOpt <- function(start, olsParam, dataTable, S, nXvar,
muHvar, nmuZUvar, uHvar, nuZUvar, vHvar, nvZVvar, Yvar, Xvar,
method, printInfo, itermax, stepmax, tol, gradtol, hessianType,
qac) {
startVal <- if (!is.null(start))
start else csttruncnorm(olsObj = olsParam, epsiRes = dataTable[["olsResiduals"]],
S = S, uHvar = uHvar, nuZUvar = nuZUvar, vHvar = vHvar,
nvZVvar = nvZVvar, nmuZUvar = nmuZUvar, muHvar = muHvar)
startLoglik <- sum(ctruncnormlike(startVal, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, nmuZUvar = nmuZUvar,
muHvar = muHvar, uHvar = uHvar, vHvar = vHvar, Yvar = Yvar,
Xvar = Xvar, S = S))
if (method %in% c("bfgs", "bhhh", "nr", "nm")) {
maxRoutine <- switch(method, bfgs = function(...) maxBFGS(...),
bhhh = function(...) maxBHHH(...), nr = function(...) maxNR(...),
nm = function(...) maxNM(...))
method <- "maxLikAlgo"
}
mleObj <- switch(method, ucminf = ucminf(par = startVal,
fn = function(parm) -sum(ctruncnormlike(parm, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, nmuZUvar = nmuZUvar,
muHvar = muHvar, uHvar = uHvar, vHvar = vHvar, Yvar = Yvar,
Xvar = Xvar, S = S)), gr = function(parm) -colSums(cgradtruncnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
nmuZUvar = nmuZUvar, muHvar = muHvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S)),
hessian = 0, control = list(trace = if (printInfo) 1 else 0, maxeval = itermax,
stepmax = stepmax, xtol = tol, grtol = gradtol)),
maxLikAlgo = maxRoutine(fn = ctruncnormlike, grad = cgradtruncnormlike,
hess = chesstruncnormlike, start = startVal, finalHessian = if (hessianType ==
2) "bhhh" else TRUE, control = list(printLevel = if (printInfo) 2 else 0,
iterlim = itermax, reltol = tol, tol = tol, qac = qac),
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
nmuZUvar = nmuZUvar, muHvar = muHvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S),
sr1 = trust.optim(x = startVal, fn = function(parm) -sum(ctruncnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
nmuZUvar = nmuZUvar, muHvar = muHvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S)),
gr = function(parm) -colSums(cgradtruncnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
nmuZUvar = nmuZUvar, muHvar = muHvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S)),
method = "SR1", control = list(maxit = itermax, cgtol = gradtol,
stop.trust.radius = tol, prec = tol, report.level = if (printInfo) 2 else 0,
report.precision = 1L)), sparse = trust.optim(x = startVal,
fn = function(parm) -sum(ctruncnormlike(parm, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, nmuZUvar = nmuZUvar,
muHvar = muHvar, uHvar = uHvar, vHvar = vHvar,
Yvar = Yvar, Xvar = Xvar, S = S)), gr = function(parm) -colSums(cgradtruncnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
nmuZUvar = nmuZUvar, muHvar = muHvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S)),
hs = function(parm) as(-chesstruncnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
nmuZUvar = nmuZUvar, muHvar = muHvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S),
"dgCMatrix"), method = "Sparse", control = list(maxit = itermax,
cgtol = gradtol, stop.trust.radius = tol, prec = tol,
report.level = if (printInfo) 2 else 0, report.precision = 1L,
preconditioner = 1L)), mla = mla(b = startVal,
fn = function(parm) -sum(ctruncnormlike(parm, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, nmuZUvar = nmuZUvar,
muHvar = muHvar, uHvar = uHvar, vHvar = vHvar,
Yvar = Yvar, Xvar = Xvar, S = S)), gr = function(parm) -colSums(cgradtruncnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
nmuZUvar = nmuZUvar, muHvar = muHvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S)),
hess = function(parm) -chesstruncnormlike(parm, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, nmuZUvar = nmuZUvar,
muHvar = muHvar, uHvar = uHvar, vHvar = vHvar,
Yvar = Yvar, Xvar = Xvar, S = S), print.info = printInfo,
maxiter = itermax, epsa = gradtol, epsb = gradtol),
nlminb = nlminb(start = startVal, objective = function(parm) -sum(ctruncnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
nmuZUvar = nmuZUvar, muHvar = muHvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S)),
gradient = function(parm) -colSums(cgradtruncnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
nmuZUvar = nmuZUvar, muHvar = muHvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S)),
hessian = function(parm) -chesstruncnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
nmuZUvar = nmuZUvar, muHvar = muHvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S),
control = list(iter.max = itermax, trace = if (printInfo) 1 else 0,
eval.max = itermax, rel.tol = tol, x.tol = tol)))
if (method %in% c("ucminf", "nlminb")) {
mleObj$gradient <- colSums(cgradtruncnormlike(mleObj$par,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
nmuZUvar = nmuZUvar, muHvar = muHvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S))
}
mlParam <- if (method %in% c("ucminf", "nlminb")) {
mleObj$par
} else {
if (method == "maxLikAlgo") {
mleObj$estimate
} else {
if (method %in% c("sr1", "sparse")) {
names(mleObj$solution) <- names(startVal)
mleObj$solution
} else {
if (method == "mla") {
mleObj$b
}
}
}
}
if (hessianType != 2) {
if (method %in% c("ucminf", "nlminb"))
mleObj$hessian <- chesstruncnormlike(parm = mleObj$par,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
nmuZUvar = nmuZUvar, muHvar = muHvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S)
if (method == "sr1")
mleObj$hessian <- chesstruncnormlike(parm = mleObj$solution,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
nmuZUvar = nmuZUvar, muHvar = muHvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S)
}
mleObj$logL_OBS <- ctruncnormlike(parm = mlParam, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, nmuZUvar = nmuZUvar,
muHvar = muHvar, uHvar = uHvar, vHvar = vHvar, Yvar = Yvar,
Xvar = Xvar, S = S)
mleObj$gradL_OBS <- cgradtruncnormlike(parm = mlParam, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, nmuZUvar = nmuZUvar,
muHvar = muHvar, uHvar = uHvar, vHvar = vHvar, Yvar = Yvar,
Xvar = Xvar, S = S)
return(list(startVal = startVal, startLoglik = startLoglik,
mleObj = mleObj, mlParam = mlParam))
}
# Conditional efficiencies estimation ----------
ctruncnormeff <- function(object, level) {
beta <- object$mlParam[1:(object$nXvar)]
omega <- object$mlParam[(object$nXvar + 1):(object$nXvar +
object$nmuZUvar)]
delta <- object$mlParam[(object$nXvar + object$nmuZUvar +
1):(object$nXvar + object$nmuZUvar + object$nuZUvar)]
phi <- object$mlParam[(object$nXvar + object$nmuZUvar + object$nuZUvar +
1):(object$nXvar + object$nmuZUvar + object$nuZUvar + object$nvZVvar)]
Xvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 1)
muHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 2)
uHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 3)
vHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 4)
mu <- as.numeric(crossprod(matrix(omega), t(muHvar)))
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
epsilon <- model.response(model.frame(object$formula, data = object$dataTable)) -
as.numeric(crossprod(matrix(beta), t(Xvar)))
mustar <- (mu * exp(Wv) - exp(Wu) * object$S * epsilon)/(exp(Wu) +
exp(Wv))
sigmastar <- sqrt(exp(Wu) * exp(Wv)/(exp(Wu) + exp(Wv)))
u <- mustar + sigmastar * dnorm(mustar/sigmastar)/pnorm(mustar/sigmastar)
uLB <- mustar + qnorm(1 - (1 - (1 - level)/2) * (1 - pnorm(-mustar/sigmastar))) *
sigmastar
uUB <- mustar + qnorm(1 - (1 - level)/2 * (1 - pnorm(-mustar/sigmastar))) *
sigmastar
if (object$logDepVar == TRUE) {
teJLMS <- exp(-u)
m <- ifelse(mustar > 0, mustar, 0)
teMO <- exp(-m)
teBC <- exp(-mustar + 1/2 * sigmastar^2) * pnorm(mustar/sigmastar -
sigmastar)/pnorm(mustar/sigmastar)
teBCLB <- exp(-uUB)
teBCUB <- exp(-uLB)
res <- bind_cols(u = u, uLB = uLB, uUB = uUB, teJLMS = teJLMS,
m = m, teMO = teMO, teBC = teBC, teBCLB = teBCLB,
teBCUB = teBCUB)
} else {
res <- bind_cols(u = u, uLB = uLB, uUB = uUB, m = m)
}
return(res)
}
# Marginal effects on inefficiencies ----------
cmargtruncnorm_Eu <- function(object) {
omega <- object$mlParam[(object$nXvar + 1):(object$nXvar +
object$nmuZUvar)]
delta <- object$mlParam[(object$nXvar + object$nmuZUvar +
1):(object$nXvar + object$nmuZUvar + object$nuZUvar)]
muHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 2)
uHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 3)
mu <- as.numeric(crossprod(matrix(omega), t(muHvar)))
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Lambda <- mu/exp(Wu/2)
mu_mat <- kronecker(matrix(omega[2:object$nmuZUvar], nrow = 1),
matrix(1 - Lambda * dnorm(Lambda)/pnorm(Lambda) - (dnorm(Lambda)/pnorm(Lambda))^2,
ncol = 1))
Wu_mat <- kronecker(matrix(delta[2:object$nuZUvar], nrow = 1),
matrix(exp(Wu/2)/2 * ((1 + Lambda^2) * dnorm(Lambda)/pnorm(Lambda) +
Lambda * (dnorm(Lambda)/pnorm(Lambda))^2), ncol = 1))
idTRUE_mu <- substring(names(omega)[-1], 5) %in% substring(names(delta)[-1],
4)
idTRUE_Wu <- substring(names(delta)[-1], 4) %in% substring(names(omega)[-1],
5)
margEff <- cbind(mu_mat[, idTRUE_mu] + Wu_mat[, idTRUE_Wu],
mu_mat[, !idTRUE_mu], Wu_mat[, !idTRUE_Wu])
colnames(margEff) <- paste0("Eu_", c(colnames(muHvar)[-1][idTRUE_mu],
colnames(muHvar)[-1][!idTRUE_mu], colnames(uHvar)[-1][!idTRUE_Wu]))
return(margEff)
}
cmargtruncnorm_Vu <- function(object) {
omega <- object$mlParam[(object$nXvar + 1):(object$nXvar +
object$nmuZUvar)]
delta <- object$mlParam[(object$nXvar + object$nmuZUvar +
1):(object$nXvar + object$nmuZUvar + object$nuZUvar)]
muHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 2)
uHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 3)
mu <- as.numeric(crossprod(matrix(omega), t(muHvar)))
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Lambda <- mu/exp(Wu/2)
m1 <- exp(Wu/2) * (Lambda + dnorm(Lambda)/pnorm(Lambda))
m2 <- exp(Wu) * (1 - Lambda * dnorm(Lambda)/pnorm(Lambda) -
(dnorm(Lambda)/pnorm(Lambda))^2)
mu_mat <- kronecker(matrix(omega[2:object$nmuZUvar], nrow = 1),
matrix(1/exp(Wu/2) * dnorm(Lambda)/pnorm(Lambda) * (m1^2 -
m2), ncol = 1))
Wu_mat <- kronecker(matrix(delta[2:object$nuZUvar], nrow = 1),
matrix(exp(Wu) * (1 - 1/2 * dnorm(Lambda)/pnorm(Lambda) *
(Lambda + Lambda^3 + (2 + 3 * Lambda^2) * dnorm(Lambda)/pnorm(Lambda) +
2 * Lambda * (dnorm(Lambda)/pnorm(Lambda))^2)),
ncol = 1))
idTRUE_mu <- substring(names(omega)[-1], 5) %in% substring(names(delta)[-1],
4)
idTRUE_Wu <- substring(names(delta)[-1], 4) %in% substring(names(omega)[-1],
5)
margEff <- cbind(mu_mat[, idTRUE_mu] + Wu_mat[, idTRUE_Wu],
mu_mat[, !idTRUE_mu], Wu_mat[, !idTRUE_Wu])
colnames(margEff) <- paste0("Vu_", c(colnames(muHvar)[-1][idTRUE_mu],
colnames(muHvar)[-1][!idTRUE_mu], colnames(uHvar)[-1][!idTRUE_Wu]))
return(margEff)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.