Nothing
########################################################
# #
# Truncated skewed laplace + normal distributions #
# #
# #
########################################################
# Log-likelihood ----------
ctslnormlike <- function(parm, nXvar, nuZUvar, nvZVvar, uHvar,
vHvar, Yvar, Xvar, S) {
beta <- parm[1:(nXvar)]
delta <- parm[(nXvar + 1):(nXvar + nuZUvar)]
phi <- parm[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar)]
lambda <- parm[nXvar + nuZUvar + nvZVvar + 1]
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
epsilon <- Yvar - as.numeric(crossprod(matrix(beta), t(Xvar)))
A <- exp(Wv)/(2 * exp(Wu)) + S * epsilon/exp(Wu/2)
B <- (1 + lambda)^2 * exp(Wv)/(2 * exp(Wu)) + S * epsilon *
(1 + lambda)/exp(Wu/2)
a <- -exp(Wv/2)/exp(Wu/2) - S * epsilon/exp(Wv/2)
b <- -exp(Wv/2) * (1 + lambda)/exp(Wu/2) - S * epsilon/exp(Wv/2)
if (lambda < 0) {
return(NA)
} else {
ll <- log(1 + lambda) - log(2 * lambda + 1) - 1/2 * Wu +
log(2 * exp(A) * pnorm(a) - exp(B) * pnorm(b))
return(ll)
}
}
# starting value for the log-likelihood ----------
csttslnorm <- function(olsObj, epsiRes, S, nuZUvar, uHvar, nvZVvar,
vHvar) {
m2 <- moment(epsiRes, order = 2)
m3 <- moment(epsiRes, order = 3)
if (S * m3 > 0) {
varu <- (abs((-S * m3/2)))^(2/3)
} else {
varu <- (-S * m3/2)^(2/3)
}
if (m2 < varu) {
varv <- abs(m2 - varu)
} else {
varv <- m2 - varu
}
dep_u <- 1/2 * log((epsiRes^2 - varv)^2)
dep_v <- 1/2 * log((epsiRes^2 - varu)^2)
reg_hetu <- if (nuZUvar == 1) {
lm(log(varu) ~ 1)
} else {
lm(dep_u ~ ., data = as.data.frame(uHvar[, 2:nuZUvar]))
}
if (any(is.na(reg_hetu$coefficients)))
stop("At least one of the OLS coefficients of 'uhet' is NA: ",
paste(colnames(uHvar)[is.na(reg_hetu$coefficients)],
collapse = ", "), ". This may be due to a singular matrix due to potential perfect multicollinearity",
call. = FALSE)
reg_hetv <- if (nvZVvar == 1) {
lm(log(varv) ~ 1)
} else {
lm(dep_v ~ ., data = as.data.frame(vHvar[, 2:nvZVvar]))
}
if (any(is.na(reg_hetv$coefficients)))
stop("at least one of the OLS coefficients of 'vhet' is NA: ",
paste(colnames(vHvar)[is.na(reg_hetv$coefficients)],
collapse = ", "), ". This may be due to a singular matrix due to potential perfect multicollinearity",
call. = FALSE)
delta <- coefficients(reg_hetu)
names(delta) <- paste0("Zu_", colnames(uHvar))
phi <- coefficients(reg_hetv)
names(phi) <- paste0("Zv_", colnames(vHvar))
if (names(olsObj)[1] == "(Intercept)") {
beta <- c(olsObj[1] + S * sqrt(varu), olsObj[-1])
} else {
beta <- olsObj
}
return(c(beta, delta, phi, lambda = 0.03))
}
# Gradient of the likelihood function ----------
cgradtslnormlike <- function(parm, nXvar, nuZUvar, nvZVvar, uHvar,
vHvar, Yvar, Xvar, S) {
beta <- parm[1:(nXvar)]
delta <- parm[(nXvar + 1):(nXvar + nuZUvar)]
phi <- parm[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar)]
lambda <- parm[nXvar + nuZUvar + nvZVvar + 1]
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
epsilon <- Yvar - as.numeric(crossprod(matrix(beta), t(Xvar)))
wvwu <- exp(Wv/2)/exp(Wu/2)
d <- (1 + lambda) * wvwu + S * (epsilon)/exp(Wv/2)
pa <- pnorm(-(wvwu + S * (epsilon)/exp(Wv/2)))
da <- dnorm(-(wvwu + S * (epsilon)/exp(Wv/2)))
pb <- pnorm(-(d))
db <- dnorm(-(d))
eB <- exp(((1 + lambda) * exp(Wv)/(2 * exp(Wu)) + S * (epsilon)/exp(Wu/2)) *
(1 + lambda))
eA <- exp(exp(Wv)/(2 * exp(Wu)) + S * (epsilon)/exp(Wu/2))
eC <- (1 + lambda) * exp(Wv)/exp(Wu) + S * (epsilon)/exp(Wu/2)
epsiv <- 0.5 * (S * (epsilon)/exp(Wv/2))
epsiuv <- 0.5 * (wvwu) - epsiv
sigx1 <- 0.5 * (S * (epsilon)/exp(Wu/2)) + 2 * (exp(Wu) *
exp(Wv)/(2 * exp(Wu))^2)
papb <- 2 * (eA * pa) - eB * pb
epsivl <- 0.5 * ((1 + lambda) * wvwu) - epsiv
sigx2 <- 2 * (eA * (exp(Wv) * pa/(2 * exp(Wu)) - (epsiuv) *
da)) - ((1 + lambda)^2 * exp(Wv) * pb/(2 * exp(Wu)) -
(epsivl) * db) * eB
epsiuvl <- (1 + lambda) * exp(Wu) * exp(Wv)/(2 * exp(Wu))^2
epsiuvlx2 <- (0.5 * (S * (epsilon)/exp(Wu/2)) + 2 * (epsiuvl))
sigx3 <- 2 * ((0.5 * (da * wvwu) - (sigx1) * pa) * eA) -
(0.5 * (db * wvwu) - epsiuvlx2 * pb) * (1 + lambda) *
eB
sigx4 <- db/exp(Wv/2) - (1 + lambda) * pb/exp(Wu/2)
dpa <- da/exp(Wv/2) - pa/exp(Wu/2)
sigx5 <- 2 * ((dpa) * eA) - (sigx4) * eB
pdbuv <- (eC) * pb - db * wvwu
gradll <- cbind(sweep(Xvar, MARGIN = 1, STATS = S * (sigx5)/(papb),
FUN = "*"), sweep(uHvar, MARGIN = 1, STATS = ((sigx3)/(papb) -
0.5), FUN = "*"), sweep(vHvar, MARGIN = 1, STATS = (sigx2)/(papb),
FUN = "*"), 1/(1 + lambda) - ((pdbuv) * eB/(papb) + 2/(1 +
2 * lambda)))
return(gradll)
}
# Hessian of the likelihood function ----------
chesstslnormlike <- function(parm, nXvar, nuZUvar, nvZVvar, uHvar,
vHvar, Yvar, Xvar, S) {
beta <- parm[1:(nXvar)]
delta <- parm[(nXvar + 1):(nXvar + nuZUvar)]
phi <- parm[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar)]
lambda <- parm[nXvar + nuZUvar + nvZVvar + 1]
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
epsilon <- Yvar - as.numeric(crossprod(matrix(beta), t(Xvar)))
wvwu <- exp(Wv/2)/exp(Wu/2)
d <- (1 + lambda) * wvwu + S * (epsilon)/exp(Wv/2)
pa <- pnorm(-(wvwu + S * (epsilon)/exp(Wv/2)))
da <- dnorm(-(wvwu + S * (epsilon)/exp(Wv/2)))
pb <- pnorm(-(d))
db <- dnorm(-(d))
eB <- exp(((1 + lambda) * exp(Wv)/(2 * exp(Wu)) + S * (epsilon)/exp(Wu/2)) *
(1 + lambda))
eA <- exp(exp(Wv)/(2 * exp(Wu)) + S * (epsilon)/exp(Wu/2))
eC <- (1 + lambda) * exp(Wv)/exp(Wu) + S * (epsilon)/exp(Wu/2)
epsiv <- 0.5 * (S * (epsilon)/exp(Wv/2))
epsiuv <- 0.5 * (wvwu) - epsiv
sigx1 <- 0.5 * (S * (epsilon)/exp(Wu/2)) + 2 * (exp(Wu) *
exp(Wv)/(2 * exp(Wu))^2)
papb <- 2 * (eA * pa) - eB * pb
epsivl <- 0.5 * ((1 + lambda) * wvwu) - epsiv
sigx2 <- 2 * (eA * (exp(Wv) * pa/(2 * exp(Wu)) - (epsiuv) *
da)) - ((1 + lambda)^2 * exp(Wv) * pb/(2 * exp(Wu)) -
(epsivl) * db) * eB
epsiuvl <- (1 + lambda) * exp(Wu) * exp(Wv)/(2 * exp(Wu))^2
epsiuvlx2 <- (0.5 * (S * (epsilon)/exp(Wu/2)) + 2 * (epsiuvl))
sigx3 <- 2 * ((0.5 * (da * wvwu) - (sigx1) * pa) * eA) -
(0.5 * (db * wvwu) - epsiuvlx2 * pb) * (1 + lambda) *
eB
sigx4 <- db/exp(Wv/2) - (1 + lambda) * pb/exp(Wu/2)
dpa <- da/exp(Wv/2) - pa/exp(Wu/2)
sigx5 <- 2 * ((dpa) * eA) - (sigx4) * eB
pdbuv <- (eC) * pb - db * wvwu
hessll <- matrix(nrow = nXvar + nuZUvar + nvZVvar + 1, ncol = nXvar +
nuZUvar + nvZVvar + 1)
hessll[1:nXvar, 1:nXvar] <- crossprod(sweep(Xvar, MARGIN = 1,
STATS = S^2 * (2 * ((((wvwu + S * (epsilon)/exp(Wv/2))/exp(Wv/2) -
1/exp(Wu/2)) * da/exp(Wv/2) - (dpa)/exp(Wu/2)) *
eA) - ((((d)/exp(Wv/2) - (1 + lambda)/exp(Wu/2)) *
db/exp(Wv/2) - (1 + lambda) * (sigx4)/exp(Wu/2)) *
eB + (sigx5)^2/(papb)))/(papb), FUN = "*"), Xvar)
hessll[1:nXvar, (nXvar + 1):(nXvar + nuZUvar)] <- crossprod(sweep(Xvar,
MARGIN = 1, STATS = S * (2 * ((((0.5 + sigx1) * pa -
0.5 * (da * wvwu))/exp(Wu/2) + (0.5 * ((wvwu + S *
(epsilon)/exp(Wv/2))/exp(Wu/2)) - (sigx1)/exp(Wv/2)) *
da) * eA) - (((0.5 * ((d)/exp(Wu/2)) - epsiuvlx2/exp(Wv/2)) *
db + (0.5 * pb - (0.5 * (db * wvwu) - epsiuvlx2 *
pb) * (1 + lambda))/exp(Wu/2)) * (1 + lambda) * eB +
(sigx3) * (sigx5)/(papb)))/(papb), FUN = "*"), uHvar)
hessll[1:nXvar, (nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar)] <- crossprod(sweep(Xvar,
MARGIN = 1, STATS = S * (2 * ((da * (exp(Wv)/(2 * exp(Wu)) -
((epsiuv) * (wvwu + S * (epsilon)/exp(Wv/2)) + 0.5))/exp(Wv/2) -
(exp(Wv) * pa/(2 * exp(Wu)) - (epsiuv) * da)/exp(Wu/2)) *
eA) - ((((1 + lambda)^2 * exp(Wv)/(2 * exp(Wu)) -
((d) * (epsivl) + 0.5)) * db/exp(Wv/2) - ((1 + lambda)^2 *
exp(Wv) * pb/(2 * exp(Wu)) - (epsivl) * db) * (1 +
lambda)/exp(Wu/2)) * eB + (sigx5) * (sigx2)/(papb)))/(papb),
FUN = "*"), vHvar)
hessll[1:nXvar, (nXvar + nuZUvar + nvZVvar + 1)] <- matrix(colSums(sweep(Xvar,
MARGIN = 1, STATS = -(S * (((eC)/exp(Wv/2) - (d)/exp(Wu/2)) *
db - (((pdbuv) * (1 + lambda) + pb)/exp(Wu/2) + (pdbuv) *
(sigx5)/(papb))) * eB/(papb)), FUN = "*")), ncol = 1)
hessll[(nXvar + 1):(nXvar + nuZUvar), (nXvar + 1):(nXvar +
nuZUvar)] <- crossprod(sweep(uHvar, MARGIN = 1, STATS = (2 *
(((0.5 * (0.5 * (exp(Wv/2) * (wvwu + S * (epsilon)/exp(Wv/2))/exp(Wu/2)) -
0.5) - 0.5 * (sigx1)) * da * wvwu - ((0.5 * (da *
wvwu) - (sigx1) * pa) * (sigx1) + (2 * ((1 - 8 *
(exp(Wu)^2/(2 * exp(Wu))^2)) * exp(Wu) * exp(Wv)/(2 *
exp(Wu))^2) - 0.25 * (S * (epsilon)/exp(Wu/2))) *
pa)) * eA) - (((0.5 * (0.5 * ((d) * (1 + lambda) *
wvwu) - 0.5) - 0.5 * (epsiuvlx2 * (1 + lambda))) * db *
wvwu - ((0.5 * (db * wvwu) - epsiuvlx2 * pb) * epsiuvlx2 *
(1 + lambda) + (2 * ((1 - 8 * (exp(Wu)^2/(2 * exp(Wu))^2)) *
epsiuvl) - 0.25 * (S * (epsilon)/exp(Wu/2))) * pb)) *
(1 + lambda) * eB + (sigx3)^2/(papb)))/(papb), FUN = "*"),
uHvar)
hessll[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar), (nXvar +
nuZUvar + 1):(nXvar + nuZUvar + nvZVvar)] <- crossprod(sweep(vHvar,
MARGIN = 1, STATS = (2 * ((((exp(Wv) * pa/(2 * exp(Wu)) -
(epsiuv) * da)/2 + (pa - (epsiuv) * da)/2) * exp(Wv)/exp(Wu) -
(0.25 * (wvwu) + 0.25 * (S * (epsilon)/exp(Wv/2)) -
(epsiuv)^2 * (wvwu + S * (epsilon)/exp(Wv/2))) *
da) * eA) - (((((1 + lambda)^2 * exp(Wv) * pb/(2 *
exp(Wu)) - (epsivl) * db)/2 + (pb - (epsivl) * db)/2) *
(1 + lambda)^2 * exp(Wv)/exp(Wu) - (0.25 * ((1 +
lambda) * wvwu) + 0.25 * (S * (epsilon)/exp(Wv/2)) -
(d) * (epsivl)^2) * db) * eB + (sigx2)^2/(papb)))/(papb),
FUN = "*"), vHvar)
hessll[(nXvar + 1):(nXvar + nuZUvar), (nXvar + nuZUvar + 1):(nXvar +
nuZUvar + nvZVvar)] <- crossprod(sweep(uHvar, MARGIN = 1,
STATS = (2 * ((((0.5 * (da * wvwu) - (sigx1) * pa)/(2 *
exp(Wu)) - 2 * (exp(Wu) * pa/(2 * exp(Wu))^2)) *
exp(Wv) + ((epsiuv) * (sigx1) + 0.5 * ((0.5 - (epsiuv) *
(wvwu + S * (epsilon)/exp(Wv/2))) * wvwu)) * da) *
eA) - ((((epsivl) * epsiuvlx2 + 0.5 * ((0.5 - (d) *
(epsivl)) * wvwu)) * db + ((0.5 * (db * wvwu) - epsiuvlx2 *
pb) * (1 + lambda)/(2 * exp(Wu)) - 2 * (exp(Wu) *
pb/(2 * exp(Wu))^2)) * (1 + lambda) * exp(Wv)) *
(1 + lambda) * eB + (sigx3) * (sigx2)/(papb)))/(papb),
FUN = "*"), vHvar)
hessll[(nXvar + 1):(nXvar + nuZUvar), (nXvar + nuZUvar + nvZVvar +
1)] <- matrix(colSums(sweep(uHvar, MARGIN = 1, STATS = -((((0.5 *
(eC) - 0.5 * ((d) * wvwu)) * (1 + lambda) + 0.5) * db *
wvwu - ((pdbuv) * (epsiuvlx2 * (1 + lambda) + (sigx3)/(papb)) +
((1 + lambda) * exp(Wv)/exp(Wu) + 0.5 * (S * (epsilon)/exp(Wu/2))) *
pb)) * eB/(papb)), FUN = "*")), ncol = 1)
hessll[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar), (nXvar +
nuZUvar + nvZVvar + 1)] <- matrix(colSums(sweep(vHvar,
MARGIN = 1, STATS = -((((pdbuv) * (1 + lambda)/2 + pb) *
(1 + lambda) * exp(Wv)/exp(Wu) - (((eC) * (epsivl) +
(0.5 - (d) * (epsivl)) * wvwu) * db + (pdbuv) * (sigx2)/(papb))) *
eB/(papb)), FUN = "*")), ncol = 1)
hessll[(nXvar + nuZUvar + nvZVvar + 1), (nXvar + nuZUvar + nvZVvar +
1)] <- sum(4/(1 + 2 * lambda)^2 - ((((pdbuv) * eB/(papb) +
eC) * (pdbuv) + (((d) * exp(Wv/2) - S * (epsilon))/exp(Wu/2) -
(1 + lambda) * exp(Wv)/exp(Wu)) * db * wvwu + exp(Wv) *
pb/exp(Wu)) * eB/(papb) + 1/(1 + lambda)^2))
hessll[lower.tri(hessll)] <- t(hessll)[lower.tri(hessll)]
# hessll<-(hessll+(hessll))/2
return(hessll)
}
# Optimization using different algorithms ----------
tslnormAlgOpt <- function(start, olsParam, dataTable, S, nXvar,
uHvar, nuZUvar, vHvar, nvZVvar, Yvar, Xvar, method, printInfo,
itermax, stepmax, tol, gradtol, hessianType, qac) {
startVal <- if (!is.null(start))
start else csttslnorm(olsObj = olsParam, epsiRes = dataTable[["olsResiduals"]],
S = S, uHvar = uHvar, nuZUvar = nuZUvar, vHvar = vHvar,
nvZVvar = nvZVvar)
startLoglik <- sum(ctslnormlike(startVal, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar, vHvar = vHvar,
Yvar = Yvar, Xvar = Xvar, S = S))
if (method %in% c("bfgs", "bhhh", "nr", "nm")) {
maxRoutine <- switch(method, bfgs = function(...) maxBFGS(...),
bhhh = function(...) maxBHHH(...), nr = function(...) maxNR(...),
nm = function(...) maxNM(...))
method <- "maxLikAlgo"
}
mleObj <- switch(method, ucminf = ucminf(par = startVal,
fn = function(parm) -sum(ctslnormlike(parm, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S)),
gr = function(parm) -colSums(cgradtslnormlike(parm, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S)),
hessian = 0, control = list(trace = if (printInfo) 1 else 0, maxeval = itermax,
stepmax = stepmax, xtol = tol, grtol = gradtol)),
maxLikAlgo = maxRoutine(fn = ctslnormlike, grad = cgradtslnormlike,
hess = chesstslnormlike, start = startVal, finalHessian = if (hessianType ==
2) "bhhh" else TRUE, control = list(printLevel = if (printInfo) 2 else 0,
iterlim = itermax, reltol = tol, tol = tol, qac = qac),
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S), sr1 = trust.optim(x = startVal, fn = function(parm) -sum(ctslnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S)), gr = function(parm) -colSums(cgradtslnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S)), method = "SR1", control = list(maxit = itermax,
cgtol = gradtol, stop.trust.radius = tol, prec = tol,
report.level = if (printInfo) 2 else 0, report.precision = 1L)),
sparse = trust.optim(x = startVal, fn = function(parm) -sum(ctslnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S)), gr = function(parm) -colSums(cgradtslnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S)), hs = function(parm) as(-chesstslnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S), "dgCMatrix"), method = "Sparse", control = list(maxit = itermax,
cgtol = gradtol, stop.trust.radius = tol, prec = tol,
report.level = if (printInfo) 2 else 0, report.precision = 1L,
preconditioner = 1L)), mla = mla(b = startVal, fn = function(parm) -sum(ctslnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S)), gr = function(parm) -colSums(cgradtslnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S)), hess = function(parm) -chesstslnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S), print.info = printInfo, maxiter = itermax,
epsa = gradtol, epsb = gradtol), nlminb = nlminb(start = startVal,
objective = function(parm) -sum(ctslnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S)), gradient = function(parm) -colSums(cgradtslnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S)), hessian = function(parm) -chesstslnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S), control = list(iter.max = itermax, trace = if (printInfo) 1 else 0,
eval.max = itermax, rel.tol = tol, x.tol = tol)))
if (method %in% c("ucminf", "nlminb")) {
mleObj$gradient <- colSums(cgradtslnormlike(mleObj$par,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S))
}
mlParam <- if (method %in% c("ucminf", "nlminb")) {
mleObj$par
} else {
if (method == "maxLikAlgo") {
mleObj$estimate
} else {
if (method %in% c("sr1", "sparse")) {
names(mleObj$solution) <- names(startVal)
mleObj$solution
} else {
if (method == "mla") {
mleObj$b
}
}
}
}
if (hessianType != 2) {
if (method %in% c("ucminf", "nlminb"))
mleObj$hessian <- chesstslnormlike(parm = mleObj$par,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S)
if (method == "sr1")
mleObj$hessian <- chesstslnormlike(parm = mleObj$solution,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S)
}
mleObj$logL_OBS <- ctslnormlike(parm = mlParam, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar, vHvar = vHvar,
Yvar = Yvar, Xvar = Xvar, S = S)
mleObj$gradL_OBS <- cgradtslnormlike(parm = mlParam, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar, vHvar = vHvar,
Yvar = Yvar, Xvar = Xvar, S = S)
return(list(startVal = startVal, startLoglik = startLoglik,
mleObj = mleObj, mlParam = mlParam))
}
# Conditional efficiencies estimation ----------
ctslnormeff <- function(object, level) {
beta <- object$mlParam[1:(object$nXvar)]
delta <- object$mlParam[(object$nXvar + 1):(object$nXvar +
object$nuZUvar)]
phi <- object$mlParam[(object$nXvar + object$nuZUvar + 1):(object$nXvar +
object$nuZUvar + object$nvZVvar)]
Xvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 1)
uHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 2)
vHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 3)
lambda <- Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
epsilon <- model.response(model.frame(object$formula, data = object$dataTable)) -
as.numeric(crossprod(matrix(beta), t(Xvar)))
A <- exp(Wv)/(2 * exp(Wu) + object$S * epsilon/exp(Wu/2))
B <- (1 + lambda)^2 * exp(Wv)/(2 * exp(Wu) + object$S * epsilon *
(1 + lambda)/exp(Wu/2))
a <- -exp(Wv/2)/exp(Wu/2) - object$S * epsilon/exp(Wv/2)
b <- -exp(Wv/2) * (1 + lambda)/exp(Wu/2) - object$S * epsilon/exp(Wv/2)
u <- exp(Wv/2) * (2 * exp(A) * (dnorm(a) + a * pnorm(a)) -
exp(B) * (dnorm(b) + b * dnorm(b)))/(2 * exp(A) * pnorm(a) -
exp(B) * pnorm(b))
if (object$logDepVar == TRUE) {
teJLMS <- exp(-u)
teBC <- (2 * exp(A) * exp(-a * exp(Wv/2) + exp(Wv)/2) *
pnorm(a - exp(Wv/2)) - exp(B) * exp(-b * exp(Wv/2) +
exp(Wv)/2) * pnorm(b - exp(Wv/2)))/(2 * exp(A) *
pnorm(a) - exp(B) * pnorm(b))
res <- bind_cols(u = u, teJLMS = teJLMS, teBC = teBC)
} else {
res <- bind_cols(u = u)
}
return(res)
}
# Marginal effects on inefficiencies ----------
cmargtslnorm_Eu <- function(object) {
delta <- object$mlParam[(object$nXvar + 1):(object$nXvar +
object$nuZUvar)]
uHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 2)
lambda <- Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
margEff <- kronecker(matrix(delta[2:object$nuZUvar] * (1 +
4 * lambda + 2 * lambda^2)/((1 + lambda) * (1 + 2 * lambda)),
nrow = 1), matrix(exp(Wu/2), ncol = 1))
colnames(margEff) <- paste0("Eu_", colnames(uHvar)[-1])
return(margEff)
}
cmargtslnorm_Vu <- function(object) {
delta <- object$mlParam[(object$nXvar + 1):(object$nXvar +
object$nuZUvar)]
uHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 2)
lambda <- Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
margEff <- kronecker(matrix(delta[2:object$nuZUvar] * (1 +
8 * lambda + 16 * lambda^2 + 12 * lambda^3 + 4 * lambda^4)/((1 +
lambda)^2 * (1 + 2 * lambda)^2), nrow = 1), matrix(exp(Wu),
ncol = 1))
colnames(margEff) <- paste0("Vu_", colnames(uHvar)[-1])
return(margEff)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.