Nothing
########################################################
# #
# Weibull + normal distributions #
# #
# #
########################################################
# Log-likelihood ----------
cweibullnormlike <- function(parm, nXvar, nuZUvar, nvZVvar, uHvar,
vHvar, Yvar, Xvar, S, N, FiMat) {
beta <- parm[1:(nXvar)]
delta <- parm[(nXvar + 1):(nXvar + nuZUvar)]
phi <- parm[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar)]
k <- parm[nXvar + nuZUvar + nvZVvar + 1]
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
epsilon <- Yvar - as.numeric(crossprod(matrix(beta), t(Xvar)))
if (k < 0)
return(NA)
ll <- numeric(N)
for (i in 1:N) {
ur <- exp(Wu[i]/2) * (-log(1 - FiMat[i, ]))^(1/k)
ll[i] <- log(mean(1/exp(Wv[i]/2) * dnorm((epsilon[i] +
S * ur)/exp(Wv[i]/2))))
}
return(ll)
}
# starting value for the log-likelihood ----------
cstweibullnorm <- function(olsObj, epsiRes, S, nuZUvar, uHvar,
nvZVvar, vHvar) {
m2 <- moment(epsiRes, order = 2)
m3 <- moment(epsiRes, order = 3)
if (S * m3 > 0) {
varu <- (abs((-S * m3/2)))^(2/3)
} else {
varu <- (-S * m3/2)^(2/3)
}
if (m2 < varu) {
varv <- abs(m2 - varu)
} else {
varv <- m2 - varu
}
dep_u <- 1/2 * log((epsiRes^2 - varv)^2)
dep_v <- 1/2 * log((epsiRes^2 - varu)^2)
reg_hetu <- if (nuZUvar == 1) {
lm(log(varu) ~ 1)
} else {
lm(dep_u ~ ., data = as.data.frame(uHvar[, 2:nuZUvar]))
}
if (any(is.na(reg_hetu$coefficients)))
stop("At least one of the OLS coefficients of 'uhet' is NA: ",
paste(colnames(uHvar)[is.na(reg_hetu$coefficients)],
collapse = ", "), ". This may be due to a singular matrix due to potential perfect multicollinearity",
call. = FALSE)
reg_hetv <- if (nvZVvar == 1) {
lm(log(varv) ~ 1)
} else {
lm(dep_v ~ ., data = as.data.frame(vHvar[, 2:nvZVvar]))
}
if (any(is.na(reg_hetv$coefficients)))
stop("at least one of the OLS coefficients of 'vhet' is NA: ",
paste(colnames(vHvar)[is.na(reg_hetv$coefficients)],
collapse = ", "), ". This may be due to a singular matrix due to potential perfect multicollinearity",
call. = FALSE)
delta <- coefficients(reg_hetu)
names(delta) <- paste0("Zu_", colnames(uHvar))
phi <- coefficients(reg_hetv)
names(phi) <- paste0("Zv_", colnames(vHvar))
if (names(olsObj)[1] == "(Intercept)") {
beta <- c(olsObj[1] + S * sqrt(varu), olsObj[-1])
} else {
beta <- olsObj
}
return(c(beta, delta, phi, k = 1))
}
# Gradient of the likelihood function ----------
cgradweibullnormlike <- function(parm, nXvar, nuZUvar, nvZVvar,
uHvar, vHvar, Yvar, Xvar, S, N, FiMat) {
beta <- parm[1:(nXvar)]
delta <- parm[(nXvar + 1):(nXvar + nuZUvar)]
phi <- parm[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar)]
k <- parm[nXvar + nuZUvar + nvZVvar + 1]
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
epsilon <- Yvar - as.numeric(crossprod(matrix(beta), t(Xvar)))
gradll <- matrix(nrow = N, ncol = nXvar + nuZUvar + nvZVvar +
1)
lFimat <- (-log(1 - FiMat))^(1/k)
lFiu <- sweep(S * lFimat, MARGIN = 1, STATS = exp(Wu/2),
FUN = "*")
lFiuepsi <- sweep(lFiu, MARGIN = 1, STATS = epsilon, FUN = "+")
dFimat <- dnorm(sweep(lFiuepsi, MARGIN = 1, STATS = 1/exp(Wv/2),
FUN = "*"))
dFiv <- sweep(dFimat, MARGIN = 1, STATS = 1/exp(Wv/2), FUN = "*")
lFi1 <- dFimat * lFiuepsi
lFi2 <- log(-log(1 - FiMat))
lFi3 <- lFimat * lFi1
sigx1 <- sweep(lFi1, MARGIN = 1, STATS = 1/exp(Wv/2)^3, FUN = "*")
sigx2 <- sweep(S * lFi2 * lFi3, MARGIN = 1, STATS = exp(Wu/2)/(k^2 *
exp(Wv/2)^3), FUN = "*")
sigx3 <- sweep(lFi3, MARGIN = 1, STATS = exp(Wu/2)/exp(Wv/2)^3,
FUN = "*")
sigx4 <- sweep(sweep(0.5 * lFi1 * lFiuepsi, MARGIN = 1, STATS = 1/exp(Wv/2)^2,
FUN = "*") - 0.5 * dFimat, MARGIN = 1, STATS = 1/exp(Wv/2),
FUN = "*")
sdFiv <- apply(dFiv, 1, sum)
gx <- matrix(nrow = N, ncol = nXvar)
for (k in 1:nXvar) {
gx[, k] <- apply(sweep(sigx1, MARGIN = 1, STATS = Xvar[,
k], FUN = "*"), 1, sum)/sdFiv
}
gu <- matrix(nrow = N, ncol = nuZUvar)
for (k in 1:nuZUvar) {
gu[, k] <- apply(sweep(sigx3, MARGIN = 1, STATS = -(0.5 *
(S * uHvar[, k])), FUN = "*"), 1, sum)/sdFiv
}
gv <- matrix(nrow = N, ncol = nvZVvar)
for (k in 1:nvZVvar) {
gv[, k] <- apply(sweep(sigx4, MARGIN = 1, STATS = vHvar[,
k], FUN = "*"), 1, sum)/sdFiv
}
gradll <- cbind(gx, gu, gv, apply(sigx2, 1, sum)/sdFiv)
return(gradll)
}
# Optimization using different algorithms ----------
weibullnormAlgOpt <- function(start, olsParam, dataTable, S,
nXvar, N, FiMat, uHvar, nuZUvar, vHvar, nvZVvar, Yvar, Xvar,
method, printInfo, itermax, stepmax, tol, gradtol, hessianType,
qac) {
startVal <- if (!is.null(start))
start else cstweibullnorm(olsObj = olsParam, epsiRes = dataTable[["olsResiduals"]],
S = S, uHvar = uHvar, nuZUvar = nuZUvar, vHvar = vHvar,
nvZVvar = nvZVvar)
startLoglik <- sum(cweibullnormlike(startVal, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar, vHvar = vHvar,
Yvar = Yvar, Xvar = Xvar, S = S, N = N, FiMat = FiMat))
if (method %in% c("bfgs", "bhhh", "nr", "nm")) {
maxRoutine <- switch(method, bfgs = function(...) maxBFGS(...),
bhhh = function(...) maxBHHH(...), nr = function(...) maxNR(...),
nm = function(...) maxNM(...))
method <- "maxLikAlgo"
}
mleObj <- switch(method, ucminf = ucminf(par = startVal,
fn = function(parm) -sum(cweibullnormlike(parm, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S, N = N,
FiMat = FiMat)), gr = function(parm) -colSums(cgradweibullnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat)), hessian = 0, control = list(trace = if (printInfo) 1 else 0,
maxeval = itermax, stepmax = stepmax, xtol = tol,
grtol = gradtol)), maxLikAlgo = maxRoutine(fn = cweibullnormlike,
grad = cgradweibullnormlike, start = startVal, finalHessian = if (hessianType ==
2) "bhhh" else TRUE, control = list(printLevel = if (printInfo) 2 else 0,
iterlim = itermax, reltol = tol, tol = tol, qac = qac),
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S, N = N,
FiMat = FiMat), sr1 = trust.optim(x = startVal,
fn = function(parm) -sum(cweibullnormlike(parm, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S, N = N,
FiMat = FiMat)), gr = function(parm) -colSums(cgradweibullnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat)), method = "SR1", control = list(maxit = itermax,
cgtol = gradtol, stop.trust.radius = tol, prec = tol,
report.level = if (printInfo) 2 else 0, report.precision = 1L)),
sparse = trust.optim(x = startVal, fn = function(parm) -sum(cweibullnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat)), gr = function(parm) -colSums(cgradweibullnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat)), hs = function(parm) as(jacobian(function(parm) -colSums(cgradweibullnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat)), parm), "dgCMatrix"),
method = "Sparse", control = list(maxit = itermax,
cgtol = gradtol, stop.trust.radius = tol, prec = tol,
report.level = if (printInfo) 2 else 0, report.precision = 1L,
preconditioner = 1L)), mla = mla(b = startVal,
fn = function(parm) -sum(cweibullnormlike(parm, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S,
N = N, FiMat = FiMat)), gr = function(parm) -colSums(cgradweibullnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat)), print.info = printInfo,
maxiter = itermax, epsa = gradtol, epsb = gradtol),
nlminb = nlminb(start = startVal, objective = function(parm) -sum(cweibullnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat)), gradient = function(parm) -colSums(cgradweibullnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat)), control = list(iter.max = itermax,
trace = if (printInfo) 1 else 0, eval.max = itermax, rel.tol = tol,
x.tol = tol)))
if (method %in% c("ucminf", "nlminb")) {
mleObj$gradient <- colSums(cgradweibullnormlike(mleObj$par,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat))
}
mlParam <- if (method %in% c("ucminf", "nlminb")) {
mleObj$par
} else {
if (method == "maxLikAlgo") {
mleObj$estimate
} else {
if (method %in% c("sr1", "sparse")) {
names(mleObj$solution) <- names(startVal)
mleObj$solution
} else {
if (method == "mla") {
mleObj$b
}
}
}
}
if (hessianType != 2) {
if (method %in% c("ucminf", "nlminb"))
mleObj$hessian <- jacobian(function(parm) colSums(cgradweibullnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat)), mleObj$par)
if (method == "sr1")
mleObj$hessian <- jacobian(function(parm) colSums(cgradweibullnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat)), mleObj$solution)
}
mleObj$logL_OBS <- cweibullnormlike(parm = mlParam, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar, vHvar = vHvar,
Yvar = Yvar, Xvar = Xvar, S = S, N = N, FiMat = FiMat)
mleObj$gradL_OBS <- cgradweibullnormlike(parm = mlParam,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S, N = N,
FiMat = FiMat)
return(list(startVal = startVal, startLoglik = startLoglik,
mleObj = mleObj, mlParam = mlParam))
}
# average efficiency (BC style) evaluation ----------
fnExpUWeiNorm <- function(u, sigma, k) {
exp(-u) * k/sigma * (u/sigma)^(k - 1) * exp(-(u/sigma)^k)
}
# integral to solve for conditional efficiencies ----------
fnCondEffWeibull <- function(u, sigmaU, sigmaV, k, epsilon, S) {
u * k/(sigmaU * sigmaV) * (u/sigmaU)^(k - 1) * exp(-(u/sigmaU)^k) *
dnorm((epsilon + S * u)/sigmaV)
}
# Conditional efficiencies estimation ----------
cweibullnormeff <- function(object, level) {
beta <- object$mlParam[1:(object$nXvar)]
delta <- object$mlParam[(object$nXvar + 1):(object$nXvar +
object$nuZUvar)]
phi <- object$mlParam[(object$nXvar + object$nuZUvar + 1):(object$nXvar +
object$nuZUvar + object$nvZVvar)]
k <- object$mlParam[object$nXvar + object$nuZUvar + object$nvZVvar +
1]
Xvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 1)
uHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 2)
vHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 3)
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
epsilon <- model.response(model.frame(object$formula, data = object$dataTable)) -
as.numeric(crossprod(matrix(beta), t(Xvar)))
u <- numeric(object$Nobs)
for (i in 1:object$Nobs) {
ur <- exp(Wu[i]/2) * (-log(1 - object$FiMat[i, ]))^(1/k)
density_epsilon <- mean(1/exp(Wv[i]/2) * dnorm((epsilon[i] +
object$S * ur)/exp(Wv[i]/2)))
u[i] <- integrate(f = fnCondEffWeibull, lower = 0, upper = Inf,
sigmaU = exp(Wu[i]/2), sigmaV = exp(Wv[i]/2), k = k,
epsilon = epsilon[i], S = object$S, rel.tol = 1e-10,
stop.on.error = FALSE)$value/density_epsilon
}
if (object$logDepVar == TRUE){
teJLMS <- exp(-u)
res <- bind_cols(u = u, teJLMS = teJLMS)
} else {
res <- bind_cols(u = u)
}
return(res)
}
# Marginal effects on inefficiencies ----------
cmargweibull_Eu <- function(object) {
delta <- object$mlParam[(object$nXvar + 1):(object$nXvar +
object$nuZUvar)]
k <- object$mlParam[object$nXvar + object$nuZUvar + object$nvZVvar +
1]
uHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 2)
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
margEff <- kronecker(matrix(delta[2:object$nuZUvar] * 1/2,
nrow = 1), matrix(exp(Wu/2) * gamma(1 + 1/k), ncol = 1))
colnames(margEff) <- paste0("Eu_", colnames(uHvar)[-1])
return(margEff)
}
cmargweibull_Vu <- function(object) {
delta <- object$mlParam[(object$nXvar + 1):(object$nXvar +
object$nuZUvar)]
k <- object$mlParam[object$nXvar + object$nuZUvar + object$nvZVvar +
1]
uHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 2)
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
margEff <- kronecker(matrix(delta[2:object$nuZUvar], nrow = 1),
matrix(exp(Wu) * (gamma(1 + 2/k) - (gamma(1 + 1/k))^2),
ncol = 1))
colnames(margEff) <- paste0("Vu_", colnames(uHvar)[-1])
return(margEff)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.