Nothing
# Copyright 1998-2011 by Roger Bivand (Wald test suggested by Rein Halbersma,
# output of correlations suggested by Michael Tiefelsdorf)
#
print.sarlm <- function(x, ...)
{
if (x$type == "error") if (isTRUE(all.equal(x$lambda, x$interval[1])) ||
isTRUE(all.equal(x$lambda, x$interval[2])))
warning("lambda on interval bound - results should not be used")
if (x$type == "lag" || x$type == "mixed")
if (isTRUE(all.equal(x$rho, x$interval[1])) ||
isTRUE(all.equal(x$rho, x$interval[2])))
warning("rho on interval bound - results should not be used")
cat("\nCall:\n")
print(x$call)
cat("Type:", x$type, "\n")
cat("\nCoefficients:\n")
print(coef(x))
cat("\nLog likelihood:", logLik(x), "\n")
invisible(x)
}
summary.sarlm <- function(object, correlation = FALSE, Nagelkerke=FALSE,
Hausman=FALSE, adj.se=FALSE, ...)
{
adj <- NULL
if (object$type == "error" || ((object$type == "lag" ||
object$type == "mixed" || object$type == "sac" ||
object$type == "sacmixed") && object$ase)) {
object$coeftitle <- "(asymptotic standard errors)"
SE <- object$rest.se
if (adj.se) {
N <- length(residuals(object))
adj <- N/(N-(length(object$coefficients)))
SE <- sqrt((SE^2) * adj)
}
object$Coef <- cbind(object$coefficients, SE,
object$coefficients/SE,
2*(1-pnorm(abs(object$coefficients/SE))))
colnames(object$Coef) <- c("Estimate", "Std. Error",
ifelse(adj.se, "t value", "z value"), "Pr(>|z|)")
} else {
# intercept-only bug fix Larry Layne 20060404
if (!is.null(object$rest.se)) {
object$coeftitle <- "(numerical Hessian approximate standard errors)"
SE <- object$rest.se
if (adj.se) {
N <- length(residuals(object))
adj <- N/(N-(length(object$coefficients)))
SE <- sqrt((SE^2) * adj)
}
object$Coef <- cbind(object$coefficients, SE,
object$coefficients/SE,
2*(1-pnorm(abs(object$coefficients/SE))))
colnames(object$Coef) <- c("Estimate", "Std. Error",
ifelse(adj.se, "t value", "z value"), "Pr(>|z|)")
rownames(object$Coef) <- names(object$coefficients)
}
}
object$adj.se <- adj
if (Nagelkerke) {
nk <- NK.sarlm(object)
if (!is.null(nk)) object$NK <- nk
}
if (Hausman && object$type == "error" && !is.null(object$Hcov)) {
object$Haus <- Hausman.test(object)
}
if (object$type == "error") {
object$Wald1 <- Wald1.sarlm(object)
if (correlation) {
oresvar <- object$resvar
ctext <- "Correlation of coefficients"
if (is.null(oresvar) || is.logical(oresvar) ||
class(oresvar) == "try-error") {
oresvar <- object$fdHess
ctext <- ifelse(object$insert,
"Approximate correlation of coefficients",
"** Guesswork correlation of coefficients **")
}
object$correlation <- diag((diag(oresvar))
^(-1/2)) %*% oresvar %*%
diag((diag(oresvar))^(-1/2))
dimnames(object$correlation) <- dimnames(oresvar)
object$correltext <- ctext
}
} else if (object$type != "error") {
object$Wald1 <- Wald1.sarlm(object)
if (correlation) {
oresvar <- object$resvar
ctext <- "Correlation of coefficients"
if (is.null(oresvar) || is.logical(oresvar) ||
class(oresvar) == "try-error") {
oresvar <- object$fdHess
ctext <- "Approximate correlation of coefficients"
}
object$correlation <- diag((diag(oresvar))
^(-1/2)) %*% oresvar %*%
diag((diag(oresvar))^(-1/2))
dimnames(object$correlation) <- dimnames(oresvar)
object$correltext <- ctext
}
}
object$LR1 <- LR1.sarlm(object)
structure(object, class=c("summary.sarlm", class(object)))
}
NK.sarlm <- function(obj) {
n <- length(residuals(obj))
nullLL <- obj$LLNullLlm
if (is.null(nullLL)) return(nullLL)
c(1 - exp(-(2/n)*(logLik(obj) - nullLL)))
}
LR1.sarlm <- function(object)
{
if (!inherits(object, "sarlm")) stop("Not a sarlm object")
LLx <- logLik(object)
# LLy <- logLik(object$lm.model)
LLy <- object$logLik_lm.model
statistic <- 2*(LLx - LLy)
attr(statistic, "names") <- "Likelihood ratio"
parameter <- abs(attr(LLx, "df") - attr(LLy, "df"))
if (parameter < 1)
stop("non-positive degrees of freedom: no test possible")
attr(parameter, "names") <- "df"
p.value <- 1 - pchisq(abs(statistic), parameter)
estimate <- c(LLx, LLy)
if (object$type == "error") alt <- "spatial error model"
else alt <- "spatial lag model"
attr(estimate, "names") <- c(paste("Log likelihood of",
alt), paste("Log likelihood of OLS fit",
deparse(substitute(y))))
method <- "Likelihood Ratio diagnostics for spatial dependence"
res <- list(statistic=statistic, parameter=parameter,
p.value=p.value, estimate=estimate, method=method)
class(res) <- "htest"
res
}
Wald1.sarlm <- function(object) {
if (!inherits(object, "sarlm")) stop("Not a sarlm object")
# if (!object$ase)
# stop("Cannot compute Wald statistic: parameter a.s.e. missing")
LLx <- logLik(object)
# LLy <- logLik(object$lm.model)
LLy <- object$logLik_lm.model
if (object$type == "lag" || object$type == "mixed") {
estimate <- object$rho
rse <- object$rho.se
if (is.null(rse)) return(rse)
statistic <- (object$rho / rse)^2
attr(statistic, "names") <- ifelse(is.logical(fdHess),
"Wald statistic", "Approximate Wald statistic")
} else {
estimate <- object$lambda
lse <- object$lambda.se
if (is.null(lse)) return(lse)
statistic <- (object$lambda / lse)^2
attr(statistic, "names") <- ifelse(is.logical(fdHess),
"Wald statistic", "Approximate Wald statistic")
}
parameter <- abs(attr(LLx, "df") - attr(LLy, "df"))
if (parameter < 1)
stop("non-positive degrees of freedom: no test possible")
attr(parameter, "names") <- "df"
p.value <- 1 - pchisq(abs(statistic), parameter)
method <- "Wald diagnostics for spatial dependence"
res <- list(statistic=statistic, parameter=parameter,
p.value=p.value, estimate=estimate, method=method)
class(res) <- "htest"
res
}
Hausman.test <- function(object, ...)
UseMethod("Hausman.test", object)
Hausman.test.sarlm <- function(object, ..., tol=NULL) {
if (!inherits(object, "sarlm")) stop("not a sarlm object")
if (object$type != "error") stop("not a spatial error model")
fmeth <- ifelse(object$method != "eigen", "(approximate)", "(asymptotic)")
if (is.null(object$Hcov)) stop("Vo not available")
s2 <- object$s2
Vo <- s2 * object$Hcov
Vs <- s2 * object$Vs
d <- object$coef_lm.model - object$coefficients
if (!is.null(tol)) VV <- try(solve((Vo - Vs), tol=tol))
else VV <- try(solve(Vo - Vs))
if (class(VV) == "try.error") {
warning("(Vo - Vs) inversion failure")
return(NULL)
}
statistic <- t(d) %*% VV %*% d
attr(statistic, "names") <- "Hausman test"
parameter <- length(d)
attr(parameter, "names") <- "df"
p.value <- 1 - pchisq(abs(statistic), parameter)
method <- paste("Spatial Hausman test", fmeth)
data.name <- strwrap(deparse(object$formula), exdent=4)
if (length(data.name) > 1L)
data.name <- paste(data.name, collapse="\n ")
res <- list(statistic = statistic, parameter = parameter,
p.value = p.value, method = method, data.name=data.name)
class(res) <- "htest"
res
}
Hausman.test.gmsar <- function(object, ..., tol=NULL) {
if (!inherits(object, "gmsar")) stop("not a gmsar object")
if (is.null(object$Hcov)) stop("Vo not available")
fmeth <- "(approximate)"
s2 <- object$s2
Vo <- s2 * object$Hcov
Vs <- s2 * summary.lm(object$lm.target, correlation = FALSE)$cov.unscaled
d <- coef(object$lm.model) - coef(object$lm.target)
if (!is.null(tol)) VV <- try(solve((Vo - Vs), tol=tol))
else VV <- try(solve(Vo - Vs))
if (class(VV) == "try.error") {
warning("(Vo - Vs) inversion failure")
return(NULL)
}
statistic <- t(d) %*% VV %*% d
attr(statistic, "names") <- "Hausman test"
parameter <- length(d)
attr(parameter, "names") <- "df"
p.value <- 1 - pchisq(abs(statistic), parameter)
method <- paste("Spatial Hausman test", fmeth)
data.name <- strwrap(deparse(object$formula), exdent=4)
if (length(data.name) > 1L)
data.name <- paste(data.name, collapse="\n ")
res <- list(statistic = statistic, parameter = parameter,
p.value = p.value, method = method, data.name=data.name)
class(res) <- "htest"
res
}
print.summary.sarlm <- function(x, digits = max(5, .Options$digits - 3),
signif.stars = FALSE, ...)
{
cat("\nCall:", deparse(x$call), sep = "", fill=TRUE)
if (x$type == "error") if (isTRUE(all.equal(x$lambda, x$interval[1])) ||
isTRUE(all.equal(x$lambda, x$interval[2])))
warning("lambda on interval bound - results should not be used")
if (x$type == "lag" || x$type == "mixed")
if (isTRUE(all.equal(x$rho, x$interval[1])) ||
isTRUE(all.equal(x$rho, x$interval[2])))
warning("rho on interval bound - results should not be used")
cat("\nResiduals:\n")
resid <- residuals(x)
nam <- c("Min", "1Q", "Median", "3Q", "Max")
rq <- if (length(dim(resid)) == 2L)
structure(apply(t(resid), 1, quantile), dimnames = list(nam,
dimnames(resid)[[2]]))
else structure(quantile(resid), names = nam)
print(rq, digits = digits, ...)
cat("\nType:", x$type, "\n")
if (x$zero.policy) {
zero.regs <- attr(x, "zero.regs")
if (!is.null(zero.regs))
cat("Regions with no neighbours included:\n",
zero.regs, "\n")
}
if (!is.null(x$coeftitle)) {
cat("Coefficients:", x$coeftitle, "\n")
coefs <- x$Coef
if (!is.null(aliased <- x$aliased) && any(x$aliased)){
cat(" (", table(aliased)["TRUE"],
" not defined because of singularities)\n", sep = "")
cn <- names(aliased)
coefs <- matrix(NA, length(aliased), 4, dimnames = list(cn,
colnames(x$Coef)))
coefs[!aliased, ] <- x$Coef
}
printCoefmat(coefs, signif.stars=signif.stars, digits=digits,
na.print="NA")
}
# res <- LR.sarlm(x, x$lm.model)
res <- x$LR1
pref <- ifelse(x$ase, "Asymptotic", "Approximate (numerical Hessian)")
if (x$type == "error") {
cat("\nLambda: ", format(signif(x$lambda, digits)),
", LR test value: ", format(signif(res$statistic,
digits)), ", p-value: ", format.pval(res$p.value,
digits), "\n", sep="")
if (!is.null(x$lambda.se)) {
if (!is.null(x$adj.se)) {
x$lambda.se <- sqrt((x$lambda.se^2)*x$adj.se)
}
cat(pref, " standard error: ",
format(signif(x$lambda.se, digits)),
ifelse(is.null(x$adj.se), "\n z-value: ",
"\n t-value: "), format(signif((x$lambda/
x$lambda.se), digits)),
", p-value: ", format.pval(2*(1-pnorm(abs(x$lambda/
x$lambda.se))), digits), "\n", sep="")
cat("Wald statistic: ", format(signif(x$Wald1$statistic,
digits)), ", p-value: ", format.pval(x$Wald1$p.value,
digits), "\n", sep="")
}
} else if (x$type == "sac" || x$type == "sacmixed") {
cat("\nRho: ", format(signif(x$rho, digits)), "\n",
sep="")
if (!is.null(x$rho.se)) {
if (!is.null(x$adj.se)) {
x$rho.se <- sqrt((x$rho.se^2)*x$adj.se)
}
cat(pref, " standard error: ",
format(signif(x$rho.se, digits)),
ifelse(is.null(x$adj.se), "\n z-value: ",
"\n t-value: "),
format(signif((x$rho/x$rho.se), digits)),
", p-value: ", format.pval(2 * (1 - pnorm(abs(x$rho/
x$rho.se))), digits), "\n", sep="")
}
cat("Lambda: ", format(signif(x$lambda, digits)), "\n", sep="")
if (!is.null(x$lambda.se)) {
pref <- ifelse(x$ase, "Asymptotic",
"Approximate (numerical Hessian)")
if (!is.null(x$adj.se)) {
x$lambda.se <- sqrt((x$lambda.se^2)*x$adj.se)
}
cat(pref, " standard error: ",
format(signif(x$lambda.se, digits)),
ifelse(is.null(x$adj.se), "\n z-value: ",
"\n t-value: "), format(signif((x$lambda/
x$lambda.se), digits)),
", p-value: ", format.pval(2*(1-pnorm(abs(x$lambda/
x$lambda.se))), digits), "\n", sep="")
}
cat("\nLR test value: ", format(signif(res$statistic, digits)),
", p-value: ", format.pval(res$p.value, digits), "\n",
sep="")
} else {
cat("\nRho: ", format(signif(x$rho, digits)),
", LR test value: ", format(signif(res$statistic, digits)),
", p-value: ", format.pval(res$p.value, digits), "\n",
sep="")
if (!is.null(x$rho.se)) {
if (!is.null(x$adj.se)) {
x$rho.se <- sqrt((x$rho.se^2)*x$adj.se)
}
cat(pref, " standard error: ",
format(signif(x$rho.se, digits)),
ifelse(is.null(x$adj.se), "\n z-value: ",
"\n t-value: "),
format(signif((x$rho/x$rho.se), digits)),
", p-value: ", format.pval(2 * (1 - pnorm(abs(x$rho/
x$rho.se))), digits), "\n", sep="")
}
if (!is.null(x$Wald1)) {
cat("Wald statistic: ", format(signif(x$Wald1$statistic,
digits)), ", p-value: ", format.pval(x$Wald1$p.value,
digits), "\n", sep="")
}
}
cat("\nLog likelihood:", logLik(x), "for", x$type, "model\n")
cat("ML residual variance (sigma squared): ",
format(signif(x$s2, digits)), ", (sigma: ",
format(signif(sqrt(x$s2), digits)), ")\n", sep="")
if (!is.null(x$NK)) cat("Nagelkerke pseudo-R-squared:",
format(signif(x$NK, digits)), "\n")
cat("Number of observations:", length(x$residuals), "\n")
cat("Number of parameters estimated:", x$parameters, "\n")
cat("AIC: ", format(signif(AIC(x), digits)), ", (AIC for lm: ",
format(signif(x$AIC_lm.model, digits)), ")\n", sep="")
if (x$type == "error") {
if (!is.null(x$Haus)) {
cat("Hausman test: ", format(signif(x$Haus$statistic,
digits)), ", df: ", format(x$Haus$parameter),
", p-value: ", format.pval(x$Haus$p.value, digits),
"\n", sep="")
}
}
if ((x$type == "lag" || x$type == "mixed") && x$ase) {
cat("LM test for residual autocorrelation\n")
cat("test value: ", format(signif(x$LMtest, digits)),
", p-value: ", format.pval((1 - pchisq(x$LMtest, 1)),
digits), "\n", sep="")
}
if (x$type != "error" && !is.null(x$LLCoef)) {
cat("\nCoefficients: (log likelihood/likelihood ratio)\n")
printCoefmat(x$LLCoef, signif.stars=signif.stars,
digits=digits, na.print="NA")
}
correl <- x$correlation
if (!is.null(correl)) {
p <- NCOL(correl)
if (p > 1) {
cat("\n", x$correltext, "\n")
correl <- format(round(correl, 2), nsmall = 2,
digits = digits)
correl[!lower.tri(correl)] <- ""
print(correl[-1, -p, drop = FALSE], quote = FALSE)
}
}
cat("\n")
invisible(x)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.