Nothing
# Here we insert new classes for extending the object of classes yuima
setClass("param.Map",
representation(out.var = "character",
allparam = "character",
allparamMap = "character",
common = "character",
Input.var = "character",
time.var = "character"))
setClass("info.Map",
representation(formula="vector",
dimension="numeric",
type="character",
param = "param.Map"))
setClass("yuima.Map",
representation(Output = "info.Map"),
contains="yuima"
)
# Initialization
setMethod("initialize",
"param.Map",
function(.Object, out.var = character(),
allparam = character(),
allparamMap = character(),
common = character(),
Input.var = character(),
time.var = character()){
.Object@out.var <- out.var
.Object@allparam <- allparam
.Object@allparamMap <- allparamMap
.Object@common <- common
.Object@Input.var <-Input.var
.Object@time.var <- time.var
return(.Object)
}
)
#
setMethod("initialize",
"info.Map", function(.Object,
formula = vector(mode = expression),
dimension = numeric(),
type = character(),
param = new("param.Map")){
.Object@formula <- formula
.Object@dimension <- dimension
.Object@type <- type
.Object@param <- param
return(.Object)
}
)
setMethod("initialize",
"yuima.Map",
function(.Object,
#param = new("param.Map"),
Output = new("info.Map"),
yuima = new("yuima")){
#.Object@param <- param
.Object@Output <- Output
.Object@data <- yuima@data
.Object@model <- yuima@model
.Object@sampling <- yuima@sampling
.Object@characteristic <- yuima@characteristic
.Object@functional <- yuima@functional
return(.Object)
}
)
#
# Class for yuima.integral is structured as follows:
# param.Integral
# Integral$param$allparam
# Integral$param$common
# Integral$param$IntegrandParam
setClass("param.Integral",representation(allparam = "character",
common = "character", Integrandparam = "character")
)
#
setMethod("initialize","param.Integral",
function(.Object, allparam = character(),
common = character(),
Integrandparam = character()){
.Object@allparam <- allparam
.Object@common <- common
.Object@Integrandparam <- Integrandparam
return(.Object)
}
)
#
# # variable.Integral
# # Integral$var.dx
# # Integral$lower.var
# # Integral$upper.var
# # Integral$out.var
# # Integral$var.time <-"s"
#
setClass("variable.Integral",
representation(var.dx = "character",
lower.var = "character",
upper.var = "character",
out.var = "character",
var.time = "character")
)
#
setMethod("initialize","variable.Integral",
function(.Object,
var.dx = character(),
lower.var = character(),
upper.var = character(),
out.var = character(),
var.time = character()){
.Object@var.dx <- var.dx
.Object@lower.var <- lower.var
.Object@upper.var <- upper.var
.Object@out.var <- out.var
.Object@var.time <- var.time
return(.Object)
}
)
# Integrand
# Integral$IntegrandList
# Integral$dimIntegrand
setClass("Integrand",
representation(IntegrandList = "list",
dimIntegrand = "numeric")
)
setMethod("initialize","Integrand",
function(.Object,
IntegrandList = list(),
dimIntegrand = numeric()){
.Object@IntegrandList <- IntegrandList
.Object@dimIntegrand <- dimIntegrand
return(.Object)
}
)
#
# # Integral.sde
#
setClass("Integral.sde", representation(param.Integral = "param.Integral",
variable.Integral = "variable.Integral", Integrand = "Integrand")
)
#
setMethod("initialize", "Integral.sde",
function(.Object,
param.Integral = new("param.Integral"),
variable.Integral = new("variable.Integral"),
Integrand = new("Integrand")){
.Object@param.Integral <- param.Integral
.Object@variable.Integral <- variable.Integral
.Object@Integrand <- Integrand
return(.Object)
}
)
#
# # yuima.Integral
#
setClass("yuima.Integral", representation(
Integral = "Integral.sde"),
contains = "yuima"
)
#
setMethod("initialize", "yuima.Integral",
function(.Object,
Integral = new("Integral.sde"),
yuima = new("yuima")){
.Object@Integral <- Integral
#.Object@param <- param
#.Object@Output <- Output
.Object@data <- yuima@data
.Object@model <- yuima@model
.Object@sampling <- yuima@sampling
.Object@characteristic <- yuima@characteristic
.Object@functional <- yuima@functional
return(.Object)
}
)
#
# yuima.multimodel. We replacate the yuima.model class in order to
# describe from mathematical point of view the multi dimensional jump
# diffusion model
setClass("yuima.multimodel",
contains="yuima.model")
setClass("yuima.snr", representation(call = "call", coef = "numeric", snr = "numeric", model = "yuima.model"), prototype = list(call = NULL, coef = NULL, snr = NULL, model = NULL))
## yuima.qmle.incr-class
#setClassUnion("yuima.qmle.incr", members=c("yuima.carma.qmle","cogarch.est.incr"))
setClass("yuima.qmleLevy.incr",representation(Incr.Lev = "ANY",
logL.Incr = "ANY",
minusloglLevy="function",
Levydetails= "list",
Data = "ANY"),
contains="yuima.qmle")
setMethod("initialize", "yuima.qmleLevy.incr",
function(.Object,
Incr.Lev = NULL,
logL.Incr = NULL,
minusloglLevy=function(){NULL},
Levydetails= list(),
Data=NULL,
yuima = new("yuima.qmle")){
.Object@Incr.Lev <- Incr.Lev
#.Object@param <- param
#.Object@Output <- Output
.Object@logL.Incr <- logL.Incr
.Object@Levydetails<- Levydetails
.Object@minusloglLevy <- minusloglLevy
.Object@Data <- Data
.Object@model <- yuima@model
.Object@call <- yuima@call
.Object@coef <- yuima@coef
.Object@fullcoef <- yuima@fullcoef
.Object@vcov <- yuima@vcov
.Object@min <-yuima@min
.Object@details<- yuima@details
.Object@minuslogl<-yuima@minuslogl
.Object@nobs<-yuima@nobs
.Object@method<-yuima@method
return(.Object)
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.