Nothing
setPPR <- function(yuima, counting.var="N", gFun, Kernel,
var.dx= "s", var.dt = "s", lambda.var = "lambda",
lower.var="0", upper.var = "t",
nrow =1 ,ncol=1){
general <- TRUE
ret <- aux.setPPR(yuima, counting.var, gFun,
Kernel, var.dx, var.dt, lambda.var,
lower.var="0", upper.var = "t",
nrow =1 ,ncol=1,general =general)
return(ret)
}
aux.setPPR <-function(yuima, counting.var="N", gFun, Kernel,
var.dx, var.dt = "s", lambda.var = "lambda",
lower.var="0", upper.var = "t",
nrow =1 ,ncol=1, general){
g <- setMap(func = gFun, yuima = yuima,
nrow = nrow, ncol = ncol)
yuimadum <- yuima
yuimadum@time.variable <- var.dt
HawkesType <- FALSE
if(counting.var %in% var.dx){
HawkesType <- TRUE
}
if(!HawkesType){
Integral <- setIntegral(yuima=yuimadum,
integrand = Kernel, var.dx = var.dx,
lower.var = lower.var, upper.var = upper.var,
out.var = "", nrow = nrow, ncol = ncol)
}else{
Integral <- setIntegral(yuima=yuimadum,
integrand = Kernel, var.dx = var.dx,
lower.var = lower.var, upper.var = upper.var,
out.var = "", nrow = nrow, ncol = ncol)
}
if(g@Output@dimension[1]!=Integral@Integral@Integrand@dimIntegrand[1]){
yuima.stop("dimension gFun and kernel mismatch")
}
allparam <- unique(c(yuima@parameter@all, g@Output@param@allparamMap,
Integral@Integral@param.Integral@Integrandparam))
common <- unique(c(g@Output@param@common,
Integral@Integral@param.Integral@common))
paramHawkes <- list(allparam = allparam, common = common,
gFun = g@Output@param@allparamMap,
Kern = Integral@Integral@param.Integral@Integrandparam)
# IntPPR<- yuima:::setIntegral(yuima=yuimadum,
# integrand y= Kernel, var.dx = "N",
# lower.var = lower.var, upper.var = upper.var,
# out.var = "", nrow = nrow, ncol = ncol)
# return(list(Count.Proc = counting.var,
# gFun = list(param=g@Output@param, output=g@Output),
# Kernel = Integral, paramHawkes = paramHawkes,
# model = yuima, SelfEx = HawkesType))
yuima1 <- setYuima(model =yuima)
type <- yuima@measure.type
if(type == "code"){
if(!(is(yuima@measure$df,"yuima.law")))
measure <- list(df = as.character(yuima@measure$df$expr))
}else{
measure <- yuima@measure
}
if(type == "CP"){
if(!(is(yuima@measure$df,"yuima.law")))
measure <- list(intensity = as.character(yuima@measure$intensity),
df= as.character(yuima@measure$df$expr))
}else{
measure <- yuima@measure
}
IntensWithCount<-FALSE
if(!is.list(g@Output@formula)){
if(any(counting.var%in%all.vars(g@Output@formula)))
IntensWithCount<-TRUE
}else{
ddd<- length(g@Output@formula)
for(i in c(1:ddd)){
if(any(counting.var%in%all.vars(g@Output@formula[[i]])))
IntensWithCount<-TRUE
}
}
if(any(counting.var%in%Integral@Integral@variable.Integral@var.dx))
IntensWithCount<-TRUE
if(!is.list(Integral@Integral@Integrand@IntegrandList)){
if(any(counting.var%in%all.vars(Integral@Integral@Integrand@IntegrandList)))
IntensWithCount<-TRUE
}else{
ddd<- length(Integral@Integral@Integrand@IntegrandList)
for(i in c(1:ddd)){
if(any(counting.var%in%all.vars(Integral@Integral@Integrand@IntegrandList[[i]])))
IntensWithCount<-TRUE
}
}
RegressWithCount <- FALSE
if(general){
covariates<-character()
if(sum(!(counting.var==yuima@solve.variable))!=0){
condCovariate<-!(counting.var==yuima@solve.variable)
covariates<-yuima@solve.variable[condCovariate]
if(length(covariates)>0){
covariate.drift <- yuima@drift[condCovariate]
covariate.diff <- yuima@diffusion[condCovariate]
covariate.jump <- yuima@jump.coeff[condCovariate]
}
if(any(counting.var %in% all.vars(covariate.drift))){
RegressWithCount <-TRUE
}
ddd.dif <-length(covariate.diff)
if(length(covariate.diff)>0){
for(i in c(1:ddd.dif)){
if(any(counting.var %in% all.vars(covariate.diff[[i]]))){
RegressWithCount <-TRUE
}
}
}
ddd.jump <-length(covariate.jump)
if(length(covariate.jump)>0){
for(i in c(1:ddd.jump)){
if(any(counting.var %in% all.vars(covariate.jump[[i]]))){
RegressWithCount <-TRUE
}
}
}
}
PPR <- new("info.PPR",
allparam = paramHawkes$allparam,
allparamPPR = unique(c(paramHawkes$gFun,paramHawkes$Kern)),
common = paramHawkes$common,
counting.var = counting.var,
var.dx = var.dx,
upper.var = upper.var,
lower.var = lower.var,
covariates = covariates,
var.dt = var.dt,
additional.info = lambda.var,
Info.measure = list(type=type,measure=measure),
RegressWithCount=RegressWithCount,
IntensWithCount=IntensWithCount)
ret <- new("yuima.PPR", PPR = PPR,
gFun = g@Output,
Kernel = Integral@Integral,
yuima = yuima1)
}else{
PPR <- new("info.PPR",
allparam = paramHawkes$allparam,
allparamPPR = unique(c(paramHawkes$gFun,paramHawkes$Kern)),
common = paramHawkes$common,
counting.var = counting.var,
var.dx = var.dx,
upper.var = upper.var,
lower.var = lower.var,
covariates = character(),
var.dt = var.dt,
additional.info = "Exponential Hawkes",
Info.measure = list(type=type,measure=measure))
ret <- new("yuima.Hawkes", PPR = PPR,
gFun = g@Output,
Kernel = Integral@Integral,
yuima = yuima1)
}
return(ret)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.