Nothing
#' Model with selection against spontaneous loss of methylation (outselectUU)
#'
#' This model assumes that somatically heritable gains of cytosine methylation are under negative selection.
#'
#' @param pedigree.data pedigree data.
#' @param p0uu initial proportion of unmethylated cytosines.
#' @param eqp equilibrium proportion of unmethylated cytosines.
#' @param eqp.weight weight assigned to equilibrium function.
#' @param Nstarts iterations for non linear LSQ optimization.
#' @param out.dir output directory.
#' @param out.name output file name.
#' @import optimx
#' @import expm
#' @importFrom stats runif
#' @return ABneutralSoma RData file.
#' @export
#' @examples
#' #Get some toy data
#' inFile <- readRDS(system.file("extdata/soma/","outputSoma.rds", package="AlphaBeta"))
#' pedigree <- inFile$Pdata
#' p0uu_in <- inFile$tmpp0
#' eqp.weight <- 0.001
#' Nstarts <- 2
#' out.name <- "ABselectUUSOMA_CG_estimates"
#' out <- ABselectUUSOMA(pedigree.data = pedigree,
#' p0uu=p0uu_in,
#' eqp=p0uu_in,
#' eqp.weight=eqp.weight,
#' Nstarts=Nstarts,
#' out.dir=getwd(),
#' out.name=out.name)
#'
#' summary(out)
#'
ABselectUUSOMA<-function(pedigree.data, p0uu, eqp, eqp.weight, Nstarts, out.dir, out.name)
{
allow.neg.intercept="no"
##### Defining the divergence function
divergence <- function(pedigree, p0mm, p0um, p0uu, param)
{
## Initializing parameters
PrMM <- p0mm
PrUM <- p0um
PrUU <- p0uu
alpha <- param[1]
bet <- param[2]
weight <- param[3]
sel <-param[4]
## State probabilities at G0; first element = PrUU, second element = PrUM, third element = PrMM
svGzero <- c(PrUU, (weight)*PrMM, (1-weight)*PrMM)
element11<-(1-alpha)^2
element12<-(2*(1-alpha)*alpha)*(1/2*(1+sel))
element13<-(alpha^2)*sel
rowtotal1<-element11 + element12 + element13
element21<-(bet*(1-alpha))
element22<-((1-alpha)*(1-bet)+alpha*bet)*(1/2*(1+sel))
element23<-alpha*(1-bet)*sel
rowtotal2<-element21 + element22 + element23
element31<-(bet^2)
element32<-(2*((1-bet))*bet)*(1/2*(1+sel))
element33<-((1-bet))^2*sel
rowtotal3<-element31 + element32 + element33
## Defining the generation (or transition) matrix
Genmatrix <- matrix(c(element11/rowtotal1, element12/rowtotal1, element13/rowtotal1,
element21/rowtotal2, element22/rowtotal2, element23/rowtotal2,
element31/rowtotal3, element32/rowtotal3, element33/rowtotal3), nrow=3, byrow=TRUE)
## Calculating theoretical divergence for every observed pair in 'pedigree.txt'
Dt1t2<-NULL
for (p in seq_len(NROW(pedigree)))
{
## Define state vectors for t1,t2 and t0 from pedigree using matrix multiplications from library(expm)
svt0 <- t(svGzero) %*% ((Genmatrix)%^% as.numeric(pedigree[p,1]))
svt1.MM <- t(c(0,0,1)) %*% ((Genmatrix)%^% as.numeric(pedigree[p,2] - pedigree[p,1]))
svt2.MM <- t(c(0,0,1)) %*% ((Genmatrix)%^% as.numeric(pedigree[p,3] - pedigree[p,1]))
svt1.UM <- t(c(0,1,0)) %*% ((Genmatrix)%^% as.numeric(pedigree[p,2] - pedigree[p,1]))
svt2.UM <- t(c(0,1,0)) %*% ((Genmatrix)%^% as.numeric(pedigree[p,3] - pedigree[p,1]))
svt1.UU <- t(c(1,0,0)) %*% ((Genmatrix)%^% as.numeric(pedigree[p,2] - pedigree[p,1]))
svt2.UU <- t(c(1,0,0)) %*% ((Genmatrix)%^% as.numeric(pedigree[p,3] - pedigree[p,1]))
## Conditional divergences
dt1t2.MM <- 1/2*(svt1.MM[,1] * svt2.MM[,2] + svt1.MM[,2] * svt2.MM[,1] + svt1.MM[,2] * svt2.MM[,3] +
svt1.MM[,3] * svt2.MM[,2]) + 1*(svt1.MM[,1] * svt2.MM[,3] + svt1.MM[,3] * svt2.MM[,1])
dt1t2.UM <- 1/2*(svt1.UM[,1] * svt2.UM[,2] + svt1.UM[,2] * svt2.UM[,1] + svt1.UM[,2] * svt2.UM[,3] +
svt1.UM[,3] * svt2.UM[,2]) + 1*(svt1.UM[,1] * svt2.UM[,3] + svt1.UM[,3] * svt2.UM[,1])
dt1t2.UU <- 1/2*(svt1.UU[,1] * svt2.UU[,2] + svt1.UU[,2] * svt2.UU[,1] + svt1.UU[,2] * svt2.UU[,3] +
svt1.UU[,3] * svt2.UU[,2]) + 1*(svt1.UU[,1] * svt2.UU[,3] + svt1.UU[,3] * svt2.UU[,1])
## Total (weighted) divergence
Dt1t2[p]<- svt0[,1]*dt1t2.UU + svt0[,2]*dt1t2.UM + svt0[,3]*dt1t2.MM
}
# Pr(UU) at equilibrium given alpha and beta
puuinf.est<- t(svGzero) %*% ((Genmatrix)%^% 10000)
puuinf.est<- puuinf.est[1,1]
divout<-list(puuinf.est, Dt1t2)
return(divout)
}
###### Defining the Least Square function to be minimized
###### Note the equilibrium constraint, which can be made as small as desired.
LSE_intercept<-function(param_int)
{
sum((pedigree[,4] - param_int[5] - divergence(pedigree, p0mm, p0um, p0uu, param_int[1:4])[[2]])^2) +
eqp.weight*nrow(pedigree)*((divergence(pedigree, p0mm, p0um, p0uu, param_int[1:4])[[1]]-eqp)^2)
}
###### Calculating the initial proportions
###### We always assume that:
# 1. p0mm is larger than actually observed. This means if p0um is available from measurements,
# we will just add it to p0mm.
# 2. As a consequence of (1.) we also assume that p0um = 0.
p0uu<-p0uu
p0mm<-1-p0uu
p0um<-0
if(is.null(p0mm ==TRUE | is.null(eqp)==TRUE))
{stop("Both eqp value AND p0mm have to be supplied")}
if(sum(c(p0mm, p0um, p0uu), na.rm =TRUE) != 1)
{stop("The initial state probabilities don't sum to 1")}
##### Initializing
optim.method<-"Nelder-Mead"
final<-NULL
counter<-0
opt.out<-NULL
pedigree<-pedigree.data
for (s in seq_len(Nstarts) )
{
## Draw random starting values
alpha.start <-10^(runif(1, log10(10^-9), log10(10^-2)))
beta.start <-10^(runif(1, log10(10^-9), log10(10^-2)))
weight.start <-runif(1,0,0.5)
sel.start <-runif(1,0.1,1)
intercept.start <-runif(1,0,max(pedigree[,4]))
param_int0 = c(alpha.start, beta.start, weight.start, sel.start, intercept.start)
## Initializing
counter<-counter+1
message("Progress: ", counter/Nstarts, "\n")
opt.out <- suppressWarnings(optimx(par = param_int0, fn = LSE_intercept, method=optim.method))
alphafinal<-opt.out[1]
betfinal<-opt.out[2]
alphafinal<-as.numeric(opt.out[1])
betfinal<-as.numeric(opt.out[2])
weightfinal<-as.numeric(opt.out[3])
selfinal<-as.numeric(opt.out[4])
## Calculating equilibrium frequencies based on the model estimates
svGzero <- c(p0uu, (weightfinal)*p0mm, (1-weightfinal)*p0mm)
element11<-(1-alphafinal)^2
element12<-(2*(1-alphafinal)*alphafinal)*(1/2*(1+selfinal))
element13<-(alphafinal^2)*selfinal
rowtotal1<-element11 + element12 + element13
element21<-(betfinal*(1-alphafinal))
element22<-((1-alphafinal)*(1-betfinal)+alphafinal*betfinal)*(1/2*(1+selfinal))
element23<-alphafinal*(1-betfinal)*selfinal
rowtotal2<-element21 + element22 + element23
element31<-(betfinal^2)
element32<-(2*((1-betfinal))*betfinal)*(1/2*(1+selfinal))
element33<-((1-betfinal))^2*selfinal
rowtotal3<-element31 + element32 + element33
## Defining the generation (or transition) matrix
Genmatrix <- matrix(c(element11/rowtotal1, element12/rowtotal1, element13/rowtotal1,
element21/rowtotal2, element22/rowtotal2, element23/rowtotal2,
element31/rowtotal3, element32/rowtotal3, element33/rowtotal3), nrow=3, byrow=TRUE)
## Note: This is an approximation to the equilibrium values
pinf.vec <- t(svGzero) %*% ((Genmatrix)%^% 10000)
PrMMinf <- pinf.vec[1,3]
PrUMinf <- pinf.vec[1,2]
PrUUinf <- pinf.vec[1,1]
opt.out <- cbind(opt.out, PrMMinf, PrUMinf, PrUUinf, alpha.start, beta.start, weight.start,
sel.start, intercept.start)
final[[s]] <- opt.out
} # End of Nstarts loop
final <- do.call("rbind", final)
colnames(final)[1:5]<-c("alpha", "beta", "weight", "sel.coef", "intercept")
colnames(final)[14:16]<-c("PrMMinf", "PrUMinf", "PrUUinf")
##### Calculating the least square of the first part of the minimized function
lsqpart<-NULL
for (l in seq_len(NROW(final)))
{
PrMM <- p0mm
PrUM <- p0um
PrUU <- p0uu
alpha <- final[l, "alpha"]
bet <- final[l, "beta"]
weight <- final[l, "weight"]
sel <-final[l, "sel.coef"]
intercept<-final[l,"intercept"]
## State probabilities at G0; first element = PrUU, second element = PrUM, third element = PrMM
svGzero <- c(PrUU, (weight)*PrMM, (1-weight)*PrMM)
element11<-(1-alpha)^2
element12<-(2*(1-alpha)*alpha)*(1/2*(1+sel))
element13<-(alpha^2)*sel
rowtotal1<-element11 + element12 + element13
element21<-(bet*(1-alpha))
element22<-((1-alpha)*(1-bet)+alpha*bet)*(1/2*(1+sel))
element23<-alpha*(1-bet)*sel
rowtotal2<-element21 + element22 + element23
element31<-(bet^2)
element32<-(2*((1-bet))*bet)*(1/2*(1+sel))
element33<-((1-bet))^2*sel
rowtotal3<-element31 + element32 + element33
## Defining the generation (or transition) matrix
Genmatrix <- matrix(c(element11/rowtotal1, element12/rowtotal1, element13/rowtotal1,
element21/rowtotal2, element22/rowtotal2, element23/rowtotal2,
element31/rowtotal3, element32/rowtotal3, element33/rowtotal3), nrow=3, byrow=TRUE)
## Calculating theoretical divergence for every observed pair in 'pedigree.txt'
Dt1t2<-NULL
for (p in seq_len(NROW(pedigree)))
{
## Define state vectors for t1,t2 and t0 from pedigree using matrix multiplications from library(expm)
svt0 <- t(svGzero) %*% ((Genmatrix)%^% as.numeric(pedigree[p,1]))
svt1.MM <- t(c(0,0,1)) %*% ((Genmatrix)%^% as.numeric(pedigree[p,2] - pedigree[p,1]))
svt2.MM <- t(c(0,0,1)) %*% ((Genmatrix)%^% as.numeric(pedigree[p,3] - pedigree[p,1]))
svt1.UM <- t(c(0,1,0)) %*% ((Genmatrix)%^% as.numeric(pedigree[p,2] - pedigree[p,1]))
svt2.UM <- t(c(0,1,0)) %*% ((Genmatrix)%^% as.numeric(pedigree[p,3] - pedigree[p,1]))
svt1.UU <- t(c(1,0,0)) %*% ((Genmatrix)%^% as.numeric(pedigree[p,2] - pedigree[p,1]))
svt2.UU <- t(c(1,0,0)) %*% ((Genmatrix)%^% as.numeric(pedigree[p,3] - pedigree[p,1]))
## Conditional divergences
dt1t2.MM <- 1/2*(svt1.MM[,1] * svt2.MM[,2] + svt1.MM[,2] * svt2.MM[,1] + svt1.MM[,2] * svt2.MM[,3] +
svt1.MM[,3] * svt2.MM[,2]) + 1*(svt1.MM[,1] * svt2.MM[,3] + svt1.MM[,3] * svt2.MM[,1])
dt1t2.UM <- 1/2*(svt1.UM[,1] * svt2.UM[,2] + svt1.UM[,2] * svt2.UM[,1] + svt1.UM[,2] * svt2.UM[,3] +
svt1.UM[,3] * svt2.UM[,2]) + 1*(svt1.UM[,1] * svt2.UM[,3] + svt1.UM[,3] * svt2.UM[,1])
dt1t2.UU <- 1/2*(svt1.UU[,1] * svt2.UU[,2] + svt1.UU[,2] * svt2.UU[,1] + svt1.UU[,2] * svt2.UU[,3] +
svt1.UU[,3] * svt2.UU[,2]) + 1*(svt1.UU[,1] * svt2.UU[,3] + svt1.UU[,3] * svt2.UU[,1])
## Total (weighted) divergence
Dt1t2[p]<- svt0[,1]*dt1t2.UU + svt0[,2]*dt1t2.UM + svt0[,3]*dt1t2.MM
}
## Calculating the least square part
lsqpart[l]<-sum((pedigree[,4] - intercept - Dt1t2)^2)
}
## Collecting results and filtering them
final<-cbind(final, lsqpart)
colnames(final)[ncol(final)]<-c("value.part")
final<-final[order(final[,"value"]),]
#index.1<-which(final["alpha"] > 0 & final["beta"] > 0 & final["convcode"] == 0 & final["sel.coef"] >= 0 & final["sel.coef"] <= 1)
index.1<-which(final["alpha"] > 0 & final["beta"] > 0 & final["sel.coef"] >= 0 & final["sel.coef"] <= 1 & final["intercept"] > 0)
index.2<-setdiff(seq_len(NROW(final)) , index.1)
final.1<-final[index.1,]
final.2<-final[index.2,]
## Calculting the predicted values based on the 'best' model (i.e. that with the lowest least square)
PrMM <- p0mm
PrUM <- p0um
PrUU <- p0uu
alpha <- final.1[1, "alpha"]
bet <- final.1[1, "beta"]
weight <- final.1[1, "weight"]
intercept<-final.1[1,"intercept"]
sel<-final.1[1,"sel.coef"]
## State probabilities at G0; first element = PrUU, second element = PrUM, third element = PrMM
svGzero <- c(PrUU, (weight)*PrMM, (1-weight)*PrMM)
element11<-(1-alpha)^2
element12<-(2*(1-alpha)*alpha)*(1/2*(1+sel))
element13<-(alpha^2)*sel
rowtotal1<-element11 + element12 + element13
element21<-(bet*(1-alpha))
element22<-((1-alpha)*(1-bet)+alpha*bet)*(1/2*(1+sel))
element23<-alpha*(1-bet)*sel
rowtotal2<-element21 + element22 + element23
element31<-(bet^2)
element32<-(2*((1-bet))*bet)*(1/2*(1+sel))
element33<-((1-bet))^2*sel
rowtotal3<-element31 + element32 + element33
## Defining the generation (or transition) matrix
Genmatrix <- matrix(c(element11/rowtotal1, element12/rowtotal1, element13/rowtotal1,
element21/rowtotal2, element22/rowtotal2, element23/rowtotal2,
element31/rowtotal3, element32/rowtotal3, element33/rowtotal3), nrow=3, byrow=TRUE)
## Calculating theoretical divergence for every observed pair in 'pedigree.txt'
Dt1t2<-NULL
Residual<-NULL
for (p in seq_len(NROW(pedigree)))
{
## Define state vectors for t1,t2 and t0 from pedigree using matrix multiplications from library(expm)
svt0 <- t(svGzero) %*% ((Genmatrix)%^% as.numeric(pedigree[p,1]))
svt1.MM <- t(c(0,0,1)) %*% ((Genmatrix)%^% as.numeric(pedigree[p,2] - pedigree[p,1]))
svt2.MM <- t(c(0,0,1)) %*% ((Genmatrix)%^% as.numeric(pedigree[p,3] - pedigree[p,1]))
svt1.UM <- t(c(0,1,0)) %*% ((Genmatrix)%^% as.numeric(pedigree[p,2] - pedigree[p,1]))
svt2.UM <- t(c(0,1,0)) %*% ((Genmatrix)%^% as.numeric(pedigree[p,3] - pedigree[p,1]))
svt1.UU <- t(c(1,0,0)) %*% ((Genmatrix)%^% as.numeric(pedigree[p,2] - pedigree[p,1]))
svt2.UU <- t(c(1,0,0)) %*% ((Genmatrix)%^% as.numeric(pedigree[p,3] - pedigree[p,1]))
## Conditional divergences
dt1t2.MM <- 1/2*(svt1.MM[,1] * svt2.MM[,2] + svt1.MM[,2] * svt2.MM[,1] + svt1.MM[,2] * svt2.MM[,3] +
svt1.MM[,3] * svt2.MM[,2]) + 1*(svt1.MM[,1] * svt2.MM[,3] + svt1.MM[,3] * svt2.MM[,1])
dt1t2.UM <- 1/2*(svt1.UM[,1] * svt2.UM[,2] + svt1.UM[,2] * svt2.UM[,1] + svt1.UM[,2] * svt2.UM[,3] +
svt1.UM[,3] * svt2.UM[,2]) + 1*(svt1.UM[,1] * svt2.UM[,3] + svt1.UM[,3] * svt2.UM[,1])
dt1t2.UU <- 1/2*(svt1.UU[,1] * svt2.UU[,2] + svt1.UU[,2] * svt2.UU[,1] + svt1.UU[,2] * svt2.UU[,3] +
svt1.UU[,3] * svt2.UU[,2]) + 1*(svt1.UU[,1] * svt2.UU[,3] + svt1.UU[,3] * svt2.UU[,1])
## Total (weighted) divergence
Dt1t2[p]<- svt0[,1]*dt1t2.UU + svt0[,2]*dt1t2.UM + svt0[,3]*dt1t2.MM
}
## Calculating the least square part
Residual<-(pedigree[,4] - intercept - Dt1t2)
## Augmenting pedigree
delta.t<-pedigree[,2] + pedigree[,3] - 2*pedigree[,1]
pedigree<-cbind(pedigree, delta.t, Dt1t2 + intercept, Residual)
colnames(pedigree)[c(4,5,6,7)]<-c("div.obs", "delta.t","div.pred", "residual")
## Making info about settings
info<-c("p0mm", "p0um", "p0uu", "eqp", "eqp.weight", "Nstarts", "optim.method")
info2<-c(p0mm, p0um, p0uu, eqp, eqp.weight, Nstarts, optim.method)
info.out<-data.frame(info, info2)
colnames(info.out)<-c("Para", "Setting")
## Generating theoretical fit
## Reading in pedigree
obs<-pedigree[,"div.obs"]
dtime<-pedigree[,"delta.t"]
## Reading in parameter estimates
est <-final.1
alpha <-as.numeric(est[1,1])
beta<-as.numeric(est[1,2])
weight<-as.numeric(est[1,3])
sel<-as.numeric(est[1,4])
intercept<-as.numeric(est[1,5])
## Reading initial state vector
settings<-info.out
PrMM<-p0mm<-as.numeric(as.character(settings[1,2]))
PrUM<-p0um<-as.numeric(as.character(settings[2,2]))
PrUU<-p0uu<-as.numeric(as.character(settings[3,2]))
time1<- seq(1,max(c(pedigree[,2], pedigree[,3])))
time2<- seq(1,max(c(pedigree[,2], pedigree[,3])))
time.out<-expand.grid(time1,time2)
#time0<- rep(min(pedigree[,1]), nrow(time.out))
time0<- rep(0, nrow(time.out))
pedigree.new<-as.matrix(cbind(time0,time.out))
pedigree.new<-cbind(pedigree.new, c(pedigree.new[,2] + pedigree.new[,3] - 2*pedigree.new[,1]))
pedigree.new<-pedigree.new[!duplicated(pedigree.new[,4]), ]
pedigree.new<-pedigree.new[,1:3]
## State probabilities at G0; first element = PrUU, second element = PrUM, third element = PrMM
svGzero <- c(PrUU, PrMM*weight, (1-weight)*PrMM)
alphafinal<-alpha
betfinal<-beta
selfinal<-sel
interceptfinal<-intercept
element11<-(1-alphafinal)^2
element12<-(2*(1-alphafinal)*alphafinal)*(1/2*(1+selfinal))
element13<-(alphafinal^2)*selfinal
rowtotal1<-element11 + element12 + element13
element21<-(betfinal*(1-alphafinal))
element22<-((1-alphafinal)*(1-betfinal)+alphafinal*betfinal)*(1/2*(1+selfinal))
element23<-alphafinal*(1-betfinal)*selfinal
rowtotal2<-element21 + element22 + element23
element31<-(betfinal^2)
element32<-(2*((1-betfinal))*betfinal)*(1/2*(1+selfinal))
element33<-((1-betfinal))^2*selfinal
rowtotal3<-element31 + element32 + element33
## Defining the generation (or transition) matrix
Genmatrix <- matrix(c(element11/rowtotal1, element12/rowtotal1, element13/rowtotal1,
element21/rowtotal2, element22/rowtotal2, element23/rowtotal2,
element31/rowtotal3, element32/rowtotal3, element33/rowtotal3), nrow=3, byrow=TRUE)
## Calculating theoretical divergence for every observed pair in 'pedigree.txt'
Dt1t2<-NULL
for (p in seq_len(NROW(pedigree.new)))
{
## Define state vectors for t1,t2 and t0 from pedigree using matrix multiplications from library(expm)
svt0 <- t(svGzero) %*% ((Genmatrix)%^% as.numeric(pedigree.new[p,1]))
svt1.MM <- t(c(0,0,1)) %*% ((Genmatrix)%^% as.numeric(pedigree.new[p,2] - pedigree.new[p,1]))
svt2.MM <- t(c(0,0,1)) %*% ((Genmatrix)%^% as.numeric(pedigree.new[p,3] - pedigree.new[p,1]))
svt1.UM <- t(c(0,1,0)) %*% ((Genmatrix)%^% as.numeric(pedigree.new[p,2] - pedigree.new[p,1]))
svt2.UM <- t(c(0,1,0)) %*% ((Genmatrix)%^% as.numeric(pedigree.new[p,3] - pedigree.new[p,1]))
svt1.UU <- t(c(1,0,0)) %*% ((Genmatrix)%^% as.numeric(pedigree.new[p,2] - pedigree.new[p,1]))
svt2.UU <- t(c(1,0,0)) %*% ((Genmatrix)%^% as.numeric(pedigree.new[p,3] - pedigree.new[p,1]))
## Conditional divergences
dt1t2.MM <- 1/2*(svt1.MM[,1] * svt2.MM[,2] + svt1.MM[,2] * svt2.MM[,1] + svt1.MM[,2] * svt2.MM[,3] +
svt1.MM[,3] * svt2.MM[,2]) + 1*(svt1.MM[,1] * svt2.MM[,3] + svt1.MM[,3] * svt2.MM[,1])
dt1t2.UM <- 1/2*(svt1.UM[,1] * svt2.UM[,2] + svt1.UM[,2] * svt2.UM[,1] + svt1.UM[,2] * svt2.UM[,3] +
svt1.UM[,3] * svt2.UM[,2]) + 1*(svt1.UM[,1] * svt2.UM[,3] + svt1.UM[,3] * svt2.UM[,1])
dt1t2.UU <- 1/2*(svt1.UU[,1] * svt2.UU[,2] + svt1.UU[,2] * svt2.UU[,1] + svt1.UU[,2] * svt2.UU[,3] +
svt1.UU[,3] * svt2.UU[,2]) + 1*(svt1.UU[,1] * svt2.UU[,3] + svt1.UU[,3] * svt2.UU[,1])
## Total (weighted) divergence
Dt1t2[p]<- svt0[,1]*dt1t2.UU + svt0[,2]*dt1t2.UM + svt0[,3]*dt1t2.MM
}
pedigree.new<-cbind(pedigree.new, Dt1t2+interceptfinal, c(pedigree.new[,2] + pedigree.new[,3] - 2*pedigree.new[,1]))
colnames(pedigree.new)<-c("time0", "time1", "time2", "div.sim", "delta.t")
pedigree.new<-pedigree.new[order(pedigree.new[,5]),]
model<-"ABselectUUSOMA.R"
abfreeS.out<-list(final.1, final.2, pedigree, info.out, model, pedigree.new)
names(abfreeS.out)<-c("estimates", "estimates.flagged", "pedigree", "settings", "model", "for.fit.plot")
## Ouputting result datasets
dput(abfreeS.out, paste0(out.dir,"/", out.name, ".Rdata", sep=""))
return(abfreeS.out)
} #End of function
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.