Nothing
#' @name design_matrix
#' @rdname design_matrix
#' @aliases designmatrix des_matrix des_mat
#'
#' @title Generic function for creating design matrices
#'
#' @description These functions call the appropriate methods depending on the
#' class of the object \code{obj} to create RBF, polynomial or Fourier design
#' matrices.
#'
#' @param obj A basis function object.
#' @param obs A vector of observations.
#' @param ... Additional parameters.
#'
#' @return A design matrix object
#'
#' @author C.A.Kapourani \email{C.A.Kapourani@@ed.ac.uk}
#'
#' @seealso \code{\link{create_basis}}, \code{\link{eval_functions}}
#'
#' @export
NULL
#' @rdname design_matrix
#'
#' @examples
#' obj <- create_polynomial_object(M=2)
#' obs <- c(0,.2,.5)
#' poly <- design_matrix(obj, obs)
#'
#' #----------------
#'
#' obj <- create_rbf_object(M=2)
#' obs <- c(0,.2,.5)
#' rbf <- design_matrix(obj, obs)
#'
#' #----------------
#'
#' obj <- create_fourier_object(M=2)
#' obs <- c(0,.2,.5)
#' fourier <- design_matrix(obj, obs)
#'
#' @export
design_matrix <- function(obj, ...){
UseMethod("design_matrix")
}
#' @rdname design_matrix
#'
design_matrix.default <- function(obj, ...){
stop(paste0("Object type '", class(obj), "' is not implemented."))
}
#' @rdname design_matrix
#'
#' @export
design_matrix.polynomial <- function(obj, obs, ...){
assertthat::assert_that(methods::is(obj, "polynomial"))
assertthat::assert_that(is.vector(obs))
N <- length(obs) # Length of the dataset
H <- matrix(1, nrow = N, ncol = obj$M + 1)
# Compute X^(j)
if (obj$M > 0) {for (j in 1:obj$M) {H[, j + 1] <- .polynomial_basis(obs,j)}}
return(list(H = H, basis = obj))
}
#' @rdname design_matrix
#'
#' @export
design_matrix.rbf <- function(obj, obs, ...){
assertthat::assert_that(methods::is(obj, "rbf"))
assertthat::assert_that(is.vector(obs))
N <- length(obs) # Length of the dataset
if (obj$M == 0) { H <- matrix(1, nrow = N, ncol = 1); obj$mus <- 0;
}else{
if (is.null(obj$mus)) {
if (obj$eq_spaced_mus) {
obj$mus <- vector(mode = "numeric", obj$M)
if (!obj$whole_region) {
# TODO: Keep this as functionality?
for (i in 1:obj$M) {
obj$mus[i] <- i*(max(obs) - min(obs))/(obj$M + 1) +
min(obs)
}
}
}else {
repeat {
# TODO: Keep this as functionality?
km <- stats::kmeans(obs, obj$M, iter.max = 30, nstart = 10)
if (min(km$size) > 0) { break } # Accept non-empty clusters
}
obj$mus <- km$centers # RBF centers
}
}
# Convert the 'obs' vector to an N x 1 dimensional matrix
obs <- as.matrix(obs)
H <- matrix(1, nrow = N, ncol = obj$M + 1)
for (j in 1:obj$M) {
H[, j + 1] <- apply(obs,1,.rbf_basis,mus = obj$mus[j],
gamma = obj$gamma)
}
}
return(list(H = H, basis = obj))
}
#' @rdname design_matrix
#'
#' @export
design_matrix.fourier <- function(obj, obs, ...){
assertthat::assert_that(methods::is(obj, "fourier"))
assertthat::assert_that(is.vector(obs))
# Similar implementation to the FDA package.
# Compute base frequency
omega <- 2 * pi / obj$period
# Initialize design matrix
H <- matrix(1 / sqrt(2), nrow = length(obs), ncol = obj$M + 1)
if (obj$M > 1) {
j <- seq(2, obj$M, 2) # Get the basis
k <- j / 2
evals <- outer(omega * obs, k) # Compute outer product
H[, j] <- sin(evals) # Make the sine evaluations
H[, j + 1] <- cos(evals) # Make the cosine evaluations
}
# Divide by this constant to get actual magnitude
# TODO: Check this step
H <- H / sqrt(obj$period / 2)
return(list(H = H, basis = obj))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.