visualizeViewpoint: Draw a near-cis coverage plot for 4C-seq data

Description Usage Arguments Value Note Author(s) Examples

Description

This method creates a plot of near-cis 4C-seq fragment data around the experiment's viewpoint. Fragment-based raw data is visualized as grey dots, interpolated data (running median / running mean) as coloured dots. Trend line and quantiles are loess-smoothed; the trend line is shown as colored line whereas the quantiles are depicted as light-grey bands. A corresponding quantile legend is added in an extra plot.

Usage

1
visualizeViewpoint(expData, poi = data.frame(chr = character(), start = character(), end = character(), name = character(), colour = character()), plotFileName = "", windowLength = 5, interpolationType = "median", picDim = c(9, 5), maxY = -1, minQuantile = 0.2, maxQuantile = 0.8, mainColour = "blue", plotTitle = "4C-seq plot", loessSpan = 0.1, xAxisIntervalLength = 50000, yAxisIntervalLength = 500, useFragEnds = TRUE)

Arguments

expData

Experiment data of class Data4Cseq with information on the 4C-seq experiment, including normalized near-cis fragment data for visualization

poi

Points of interest that will be marked in the plot

plotFileName

Name for the 4C-seq plot file

windowLength

Length of the window for running median / running mean that is used to smooth the trend line

interpolationType

Type of interpolation, either running median or running mean

picDim

Dimensions of the plot

maxY

Maximum y-value to plot. If no maximum is given, the maximum running median / mean value is used

minQuantile

Minimum quantile to draw

maxQuantile

Maximum quantile to draw

mainColour

Main colour of the plot

plotTitle

Title of the 4C-seq plot, depicted above the main plot

loessSpan

Span value for the loess curve; smaller values mean a tighter fit to the data points, but a value that is too small may produce errors

xAxisIntervalLength

Length of the x axis intervals in the plot

yAxisIntervalLength

Length of the y axis intervals in the plot

useFragEnds

Indicates whether fragment end data is used directly or interpolated on fragment level

Value

A near-cis coverage plot and a corresponding quantile legend

Note

PDF export and output as TIFF format are supported. The export format is chosen depending on the plot file name's ending. If no plot file name is provided, the result is plotted on screen.

Author(s)

Carolin Walter

Examples

1
2
3
    data(liverData)
    file <- system.file("extdata", "fetalLiverVP.bed", package="Basic4Cseq")
        visualizeViewpoint(liverData, readPointsOfInterestFile(file), plotFileName = "", mainColour = "red", plotTitle = "Fetal Liver Near-Cis Plot", loessSpan = 0.1, maxY = 6000, xAxisIntervalLength = 50000, yAxisIntervalLength = 1000)

Basic4Cseq documentation built on Nov. 8, 2020, 6:53 p.m.