Description Usage Arguments Value Note Author(s) References See Also Examples
Performs a diagonal discriminant analysis under the assumption of a multivariate normal distribution in each classes (with equal, diagonally structured) covariance matrices. The method is also known under the name 'naive Bayes' classifier.
For S4
method information, see dldaCMA-methods.
1 |
X |
Gene expression data. Can be one of the following:
|
y |
Class labels. Can be one of the following:
WARNING: The class labels will be re-coded to
range from |
f |
A two-sided formula, if |
learnind |
An index vector specifying the observations that
belong to the learning set. May be |
models |
a logical value indicating whether the model object shall be returned |
... |
Currently unused argument. |
An object of class cloutput
.
As opposed to linear or quadratic discriminant analysis, variable selection is not strictly necessary.
Martin Slawski ms@cs.uni-sb.de
Anne-Laure Boulesteix boulesteix@ibe.med.uni-muenchen.de
McLachlan, G.J. (1992).
Discriminant Analysis and Statistical Pattern Recognition.
Wiley, New York
compBoostCMA
, ElasticNetCMA
,
fdaCMA
, flexdaCMA
, gbmCMA
,
knnCMA
, ldaCMA
, LassoCMA
,
nnetCMA
, pknnCMA
, plrCMA
,
pls_ldaCMA
, pls_lrCMA
, pls_rfCMA
,
pnnCMA
, qdaCMA
, rfCMA
,
scdaCMA
, shrinkldaCMA
, svmCMA
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | ### load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression
golubX <- as.matrix(golub[,-1])
### select learningset
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run DLDA
dldaresult <- dldaCMA(X=golubX, y=golubY, learnind=learnind)
### show results
show(dldaresult)
ftable(dldaresult)
plot(dldaresult)
### multiclass example:
### load Khan data
data(khan)
### extract class labels
khanY <- khan[,1]
### extract gene expression
khanX <- as.matrix(khan[,-1])
### select learningset
set.seed(111)
learnind <- sample(length(khanY), size=floor(ratio*length(khanY)))
### run LDA
ldaresult <- dldaCMA(X=khanX, y=khanY, learnind=learnind)
### show results
show(dldaresult)
ftable(dldaresult)
plot(dldaresult)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.