Description Usage Arguments Value Note Author(s) References See Also Examples
The Lasso (Tibshirani, 1996) is one of the most popular
tools for simultaneous shrinkage and variable selection. Recently,
Friedman, Hastie and Tibshirani (2008) have developped and algorithm to
compute the entire solution path of the Lasso for an arbitrary
generalized linear model, implemented in the package glmnet
.
The method can be used for variable selection alone, s. GeneSelection
.
For S4
method information, see LassoCMA-methods
.
1 |
X |
Gene expression data. Can be one of the following:
|
y |
Class labels. Can be one of the following:
WARNING: The class labels will be re-coded to
range from |
f |
A two-sided formula, if |
learnind |
An index vector specifying the observations that
belong to the learning set. May be |
norm.fraction |
L1 Shrinkage intensity, expressed as the fraction
of the coefficient L1 norm compared to the
maximum possible L1 norm (corresponds to |
models |
a logical value indicating whether the model object shall be returned |
... |
Further arguments passed to the function |
An object of class clvarseloutput
.
For a strongly related method, s. ElasticNetCMA
.
Up to now, this method can only be applied to binary classification.
Martin Slawski ms@cs.uni-sb.de
Anne-Laure Boulesteix boulesteix@ibe.med.uni-muenchen.de
Christoph Bernau bernau@ibe.med.uni-muenchen.de
Tibshirani, R. (1996)
Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society B, 58(1), 267-288
Friedman, J., Hastie, T. and Tibshirani, R. (2008) Regularization
Paths for Generalized Linear Models via Coordinate Descent
http://www-stat.stanford.edu/~hastie/Papers/glmnet.pdf
compBoostCMA
, dldaCMA
, ElasticNetCMA
,
fdaCMA
, flexdaCMA
, gbmCMA
,
knnCMA
, ldaCMA
,
nnetCMA
, pknnCMA
, plrCMA
,
pls_ldaCMA
, pls_lrCMA
, pls_rfCMA
,
pnnCMA
, qdaCMA
, rfCMA
,
scdaCMA
, shrinkldaCMA
, svmCMA
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | ### load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression
golubX <- as.matrix(golub[,-1])
### select learningset
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run L1 penalized logistic regression (no tuning)
lassoresult <- LassoCMA(X=golubX, y=golubY, learnind=learnind, norm.fraction = 0.2)
show(lassoresult)
ftable(lassoresult)
plot(lassoresult)
|
Loading required package: Biobase
Loading required package: BiocGenerics
Loading required package: parallel
Attaching package: ‘BiocGenerics’
The following objects are masked from ‘package:parallel’:
clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
clusterExport, clusterMap, parApply, parCapply, parLapply,
parLapplyLB, parRapply, parSapply, parSapplyLB
The following objects are masked from ‘package:stats’:
IQR, mad, sd, var, xtabs
The following objects are masked from ‘package:base’:
anyDuplicated, append, as.data.frame, basename, cbind, colnames,
dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
union, unique, unsplit, which.max, which.min
Welcome to Bioconductor
Vignettes contain introductory material; view with
'browseVignettes()'. To cite Bioconductor, see
'citation("Biobase")', and for packages 'citation("pkgname")'.
Loaded glmnet 4.0-2
Warning message:
In lognet(x, is.sparse, ix, jx, y, weights, offset, alpha, nobs, :
one multinomial or binomial class has fewer than 8 observations; dangerous ground
binary Classification with Lasso
number of predictions: 13
number of missclassifications: 1
missclassification rate: 0.077
sensitivity: 0.8
specificity: 1
predicted
true 0 1
0 8 0
1 1 4
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.