Description Usage Arguments Value Note Author(s) References See Also Examples
Performs a quadratic discriminant analysis under the assumption
of a multivariate normal distribution in each classes without restriction
concerning the covariance matrices. The function qda
from
the package MASS
is called for computation.
For S4
method information, see qdaCMA-methods.
1 |
X |
Gene expression data. Can be one of the following:
|
y |
Class labels. Can be one of the following:
WARNING: The class labels will be re-coded to
range from |
f |
A two-sided formula, if |
learnind |
An index vector specifying the observations that
belong to the learning set. May be |
models |
a logical value indicating whether the model object shall be returned |
... |
Further arguments to be passed to |
An object of class cloutput
.
Excessive variable selection has usually to performed before
qdaCMA
can be applied in the p > n
setting.
Not reducing the number of variables can result in an error
message.
Martin Slawski ms@cs.uni-sb.de
Anne-Laure Boulesteix boulesteix@ibe.med.uni-muenchen.de
McLachlan, G.J. (1992).
Discriminant Analysis and Statistical Pattern Recognition.
Wiley, New York
compBoostCMA
, dldaCMA
, ElasticNetCMA
,
fdaCMA
, flexdaCMA
, gbmCMA
,
knnCMA
, ldaCMA
, LassoCMA
,
nnetCMA
, pknnCMA
, plrCMA
,
pls_ldaCMA
, pls_lrCMA
, pls_rfCMA
,
pnnCMA
, rfCMA
,
scdaCMA
, shrinkldaCMA
, svmCMA
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | ### load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression from first 3 genes
golubX <- as.matrix(golub[,2:4])
### select learningset
ratio <- 2/3
set.seed(112)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run QDA
qdaresult <- qdaCMA(X=golubX, y=golubY, learnind=learnind)
### show results
show(qdaresult)
ftable(qdaresult)
plot(qdaresult)
### multiclass example:
### load Khan data
data(khan)
### extract class labels
khanY <- khan[,1]
### extract gene expression from first 4 genes
khanX <- as.matrix(khan[,2:5])
### select learningset
set.seed(111)
learnind <- sample(length(khanY), size=floor(ratio*length(khanY)))
### run QDA
qdaresult <- qdaCMA(X=khanX, y=khanY, learnind=learnind)
### show results
show(qdaresult)
ftable(qdaresult)
plot(qdaresult)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.