Description Usage Arguments Value Author(s) References See Also Examples
High dimensional logistic regression combined with an
L2-type (Ridge-)penalty.
Multiclass case is also possible.
For S4
method information, see plrCMA-methods
1 |
X |
Gene expression data. Can be one of the following:
|
y |
Class labels. Can be one of the following:
WARNING: The class labels will be re-coded to
range from |
f |
A two-sided formula, if |
learnind |
An index vector specifying the observations that
belong to the learning set. May be |
lambda |
Parameter governing the amount of penalization.
This hyperparameter should be |
scale |
Scale the predictors as specified by |
models |
a logical value indicating whether the model object shall be returned |
... |
Currently unused argument. |
An object of class cloutput
.
Special thanks go to
Ji Zhu (University of Ann Arbor, Michigan)
Trevor Hastie (Stanford University)
who provided the basic code that was then adapted by
Martin Slawski ms@cs.uni-sb.de
Anne-Laure Boulesteix boulesteix@ibe.med.uni-muenchen.de.
Zhu, J., Hastie, T. (2004). Classification of gene microarrays by penalized logistic regression.
Biostatistics 5:427-443.
compBoostCMA
, dldaCMA
, ElasticNetCMA
,
fdaCMA
, flexdaCMA
, gbmCMA
,
knnCMA
, ldaCMA
, LassoCMA
,
nnetCMA
, pknnCMA
,
pls_ldaCMA
, pls_lrCMA
, pls_rfCMA
,
pnnCMA
, qdaCMA
, rfCMA
,
scdaCMA
, shrinkldaCMA
, svmCMA
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | ### load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression from first 10 genes
golubX <- as.matrix(golub[,-1])
### select learningset
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run penalized logistic regression (no tuning)
plrresult <- plrCMA(X=golubX, y=golubY, learnind=learnind)
### show results
show(plrresult)
ftable(plrresult)
plot(plrresult)
### multiclass example:
### load Khan data
data(khan)
### extract class labels
khanY <- khan[,1]
### extract gene expression from first 10 genes
khanX <- as.matrix(khan[,-1])
### select learningset
set.seed(111)
learnind <- sample(length(khanY), size=floor(ratio*length(khanY)))
### run penalized logistic regression (no tuning)
plrresult <- plrCMA(X=khanX, y=khanY, learnind=learnind)
### show results
show(plrresult)
ftable(plrresult)
plot(plrresult)
|
Loading required package: Biobase
Loading required package: BiocGenerics
Loading required package: parallel
Attaching package: ‘BiocGenerics’
The following objects are masked from ‘package:parallel’:
clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
clusterExport, clusterMap, parApply, parCapply, parLapply,
parLapplyLB, parRapply, parSapply, parSapplyLB
The following objects are masked from ‘package:stats’:
IQR, mad, sd, var, xtabs
The following objects are masked from ‘package:base’:
anyDuplicated, append, as.data.frame, basename, cbind, colnames,
dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
union, unique, unsplit, which.max, which.min
Welcome to Bioconductor
Vignettes contain introductory material; view with
'browseVignettes()'. To cite Bioconductor, see
'citation("Biobase")', and for packages 'citation("pkgname")'.
binary Classification with penalized logistic regression
number of predictions: 13
number of missclassifications: 0
missclassification rate: 0
sensitivity: 1
specificity: 1
predicted
true 0 1
0 8 0
1 0 5
multiclass Classification with penalized logistic regression
number of predictions: 21
number of missclassifications: 0
missclassification rate: 0
predicted
true 0 1 2 3
0 2 0 0 0
1 0 9 0 0
2 0 0 5 0
3 0 0 0 5
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.