Description Usage Arguments Value Author(s) References See Also Examples
High dimensional logistic regression combined with an
L2-type (Ridge-)penalty.
Multiclass case is also possible.
For S4 method information, see plrCMA-methods
1 |
X |
Gene expression data. Can be one of the following:
|
y |
Class labels. Can be one of the following:
WARNING: The class labels will be re-coded to
range from |
f |
A two-sided formula, if |
learnind |
An index vector specifying the observations that
belong to the learning set. May be |
lambda |
Parameter governing the amount of penalization.
This hyperparameter should be |
scale |
Scale the predictors as specified by |
models |
a logical value indicating whether the model object shall be returned |
... |
Currently unused argument. |
An object of class cloutput.
Special thanks go to
Ji Zhu (University of Ann Arbor, Michigan)
Trevor Hastie (Stanford University)
who provided the basic code that was then adapted by
Martin Slawski ms@cs.uni-sb.de
Anne-Laure Boulesteix boulesteix@ibe.med.uni-muenchen.de.
Zhu, J., Hastie, T. (2004). Classification of gene microarrays by penalized logistic regression.
Biostatistics 5:427-443.
compBoostCMA, dldaCMA, ElasticNetCMA,
fdaCMA, flexdaCMA, gbmCMA,
knnCMA, ldaCMA, LassoCMA,
nnetCMA, pknnCMA,
pls_ldaCMA, pls_lrCMA, pls_rfCMA,
pnnCMA, qdaCMA, rfCMA,
scdaCMA, shrinkldaCMA, svmCMA
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | ### load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression from first 10 genes
golubX <- as.matrix(golub[,-1])
### select learningset
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run penalized logistic regression (no tuning)
plrresult <- plrCMA(X=golubX, y=golubY, learnind=learnind)
### show results
show(plrresult)
ftable(plrresult)
plot(plrresult)
### multiclass example:
### load Khan data
data(khan)
### extract class labels
khanY <- khan[,1]
### extract gene expression from first 10 genes
khanX <- as.matrix(khan[,-1])
### select learningset
set.seed(111)
learnind <- sample(length(khanY), size=floor(ratio*length(khanY)))
### run penalized logistic regression (no tuning)
plrresult <- plrCMA(X=khanX, y=khanY, learnind=learnind)
### show results
show(plrresult)
ftable(plrresult)
plot(plrresult)
|
Loading required package: Biobase
Loading required package: BiocGenerics
Loading required package: parallel
Attaching package: ‘BiocGenerics’
The following objects are masked from ‘package:parallel’:
clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
clusterExport, clusterMap, parApply, parCapply, parLapply,
parLapplyLB, parRapply, parSapply, parSapplyLB
The following objects are masked from ‘package:stats’:
IQR, mad, sd, var, xtabs
The following objects are masked from ‘package:base’:
anyDuplicated, append, as.data.frame, basename, cbind, colnames,
dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
union, unique, unsplit, which.max, which.min
Welcome to Bioconductor
Vignettes contain introductory material; view with
'browseVignettes()'. To cite Bioconductor, see
'citation("Biobase")', and for packages 'citation("pkgname")'.
binary Classification with penalized logistic regression
number of predictions: 13
number of missclassifications: 0
missclassification rate: 0
sensitivity: 1
specificity: 1
predicted
true 0 1
0 8 0
1 0 5
multiclass Classification with penalized logistic regression
number of predictions: 21
number of missclassifications: 0
missclassification rate: 0
predicted
true 0 1 2 3
0 2 0 0 0
1 0 9 0 0
2 0 0 5 0
3 0 0 0 5
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.