Description Usage Arguments Value Note Author(s) References See Also Examples
Probabilistic Neural Networks is the term Specht (1990) used for a Gaussian kernel estimator for the conditional class densities.
For S4
method information, see pnnCMA-methods.
1 |
X |
Gene expression data. Can be one of the following:
|
y |
Class labels. Can be one of the following:
WARNING: The class labels will be re-coded to
range from |
f |
A two-sided formula, if |
learnind |
An index vector specifying the observations that
belong to the learning set. For this method, this
must not be |
sigma |
Standard deviation of the Gaussian Kernel used. This hyperparameter should be tuned, s. |
models |
a logical value indicating whether the model object shall be returned |
An object of class cloutput
.
There is actually no strong relation of this method to Feed-Forward
Neural Networks, s. nnetCMA
.
Martin Slawski ms@cs.uni-sb.de
Anne-Laure Boulesteix boulesteix@ibe.med.uni-muenchen.de
Specht, D.F. (1990).
Probabilistic Neural Networks. Neural Networks, 3, 109-118.
compBoostCMA
, dldaCMA
, ElasticNetCMA
,
fdaCMA
, flexdaCMA
, gbmCMA
,
knnCMA
, ldaCMA
, LassoCMA
,
nnetCMA
, pknnCMA
, plrCMA
,
pls_ldaCMA
, pls_lrCMA
, pls_rfCMA
,
qdaCMA
, rfCMA
,
scdaCMA
, shrinkldaCMA
, svmCMA
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ### load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression from first 10 genes
golubX <- as.matrix(golub[,2:11])
### select learningset
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run PNN
pnnresult <- pnnCMA(X=golubX, y=golubY, learnind=learnind, sigma = 3)
### show results
show(pnnresult)
ftable(pnnresult)
plot(pnnresult)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.