Description Usage Arguments Value Note Author(s) References See Also Examples
This method constructs a classifier that extracts
Partial Least Squares components that form the the covariates
in a binary logistic regression model.
The Partial Least Squares components are computed by the package
plsgenomics
.
For S4
method information, see pls_lrCMA-methods
.
1 |
X |
Gene expression data. Can be one of the following:
|
y |
Class labels. Can be one of the following:
WARNING: The class labels will be re-coded to
range from |
f |
A two-sided formula, if |
learnind |
An index vector specifying the observations that
belong to the learning set. May be |
comp |
Number of Partial Least Squares components to extract.
Default is 2 which can be suboptimal, depending on the
particular dataset. Can be optimized using |
lambda |
Parameter controlling the amount of L2 penalization for logistic regression, usually taken to be a small value in order to stabilize estimation in the case of separable data. |
plot |
If |
models |
a logical value indicating whether the model object shall be returned |
An object of class cloutput
.
Up to now, only the two-class case is supported.
Martin Slawski ms@cs.uni-sb.de
Anne-Laure Boulesteix boulesteix@ibe.med.uni-muenchen.de
Boulesteix, A.L., Strimmer, K. (2007).
Partial least squares: a versatile tool for the analysis of high-dimensional genomic data.
Briefings in Bioinformatics 7:32-44.
compBoostCMA
, dldaCMA
, ElasticNetCMA
,
fdaCMA
, flexdaCMA
, gbmCMA
,
knnCMA
, ldaCMA
, LassoCMA
,
nnetCMA
, pknnCMA
, plrCMA
,
pls_ldaCMA
, pls_rfCMA
,
pnnCMA
, qdaCMA
, rfCMA
,
scdaCMA
, shrinkldaCMA
, svmCMA
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ### load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression
golubX <- as.matrix(golub[,-1])
### select learningset
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run PLS, combined with logistic regression
result <- pls_lrCMA(X=golubX, y=golubY, learnind=learnind)
### show results
show(result)
ftable(result)
plot(result)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.