R/partial_cor.R

Defines functions partial_cor

Documented in partial_cor

#' @title Partial correlaton analysis
#' @description A method that integrates differential expression (DE) analysis
#'     and differential network (DN) analysis to select biomarker candidates for
#'     cancer studies. partial_cor is the second step of partial correlation
#'     calculation after getting the result from select_rho_partial function.
#' @param data_list This is a list of pre-processed data outputed by the select_rho_partial 
#'     function.
#' @param rho_group1 This is the rule for choosing rho for group 1, "min": minimum rho,
#'     "ste": one standard error from minimum, or user can input rho of their choice, the default 
#'     is minimum.
#' @param rho_group2 This is the rule for choosing rho for group 2, "min": minimum rho,
#'     "ste": one standard error from minimum, or user can input rho of their choice, the default 
#'     is minimum.
#' @param p_val This is optional. It is a data frame that contains p-values for each biomolecule.
#' @param permutation This is a positive integer of the desired number of permutations. The default 
#'     is 1000 permutations.
#' @param permutation_thres This is the threshold for permutation. The defalut is 0.05 to make 95 
#'     percent confidence.
#' @examples
#' # step 1: select_rho_partial
#' preprocess<- select_rho_partial(data = Met_GU, class_label = Met_Group_GU, id = Met_name_GU,
#'                                 error_curve = "YES")
#' # step 2: partial_cor
#' partial_cor(data_list = preprocess, rho_group1 = 'min', rho_group2 = "min", permutation = 1000,
#'             p_val = pvalue_M_GU, permutation_thres = 0.05)
#' @return A list containing a score table with "ID", "P_value", "Node_Degree", "Activity_Score"
#'          and a differential network table with  "Node1", "Node2", the binary link value and the 
#'          weight link value.
#' @import devtools
#' @importFrom glasso glasso
#' @importFrom stats qnorm cor quantile var sd glm
#' @importFrom graphics abline title plot lines par
#' @export

partial_cor <- function(data_list = NULL, rho_group1 = NULL, rho_group2 = NULL, permutation = 1000,
                        p_val = NULL, permutation_thres = 0.05){
    if(missing(data_list)) {stop("please provide data_list from select_rho_partial function")}
    else{
        # group 1
        if (rho_group1 =='min'){ rho_group_1_opt = data_list$rho_table[1, 2] }
        else if (rho_group1 =='ste'){ rho_group_1_opt = data_list$rho_table[1, 1] }
        else if (is.numeric(rho_group1) & rho_group1>0) {rho_group_1_opt = rho_group1}
        else if (is.numeric(rho_group1) & rho_group1<=0) 
        {stop("please provide data_list from select_rho_partial function")}
        #default is minimum rho if no rule specified and no valid input entered
        else {rho_group_1_opt = data_list$rho_table[1, 2]} 
        # group 2
        if (rho_group2 =='min'){ rho_group_2_opt = data_list$rho_table[2, 2] }
        else if (rho_group2 =='ste'){ rho_group_2_opt = data_list$rho_table[2, 1] }
        else if (is.numeric(rho_group2) & rho_group2>0) {rho_group_2_opt = rho_group2}
        else if (is.numeric(rho_group2) & rho_group2<=0) 
        {stop("please provide data_list from select_rho_partial function")}
        #default is minimum rho if no rule specified and no valid input entered
        else {rho_group_2_opt = data_list$rho_table[2, 2]} 

        # compute precision matrix for group 1
        pre_group_1 <- glasso(data_list$cov_group_1, rho = rho_group_1_opt)
        # thres <- 1e-3
        # sum(abs(pre_group_1$wi) > thres)
        # pre_group_1$wi[1:10, 1:10]
        
        # compute partial correlation for group 1
        pc_group_1 <- compute_par(pre_group_1$wi)
        # # examine the partial correlation matrix
        # sum(abs(pc_group_1) > thres)
        # pc_group_1[1:10, 1:10]
        
        # compute precision matrix for group 2
        pre_group_2 <- glasso(data_list$cov_group_2, rho = rho_group_2_opt)
        # # examine the precision matrix
        # sum(abs(pre_group_2$wi) > thres)
        # pre_group_2$wi[1:10,1:10]
        
        # compute partial correlation for group 2
        pc_group_2 <- compute_par(pre_group_2$wi)
        # # examine the partial correlation matrix
        # sum(abs(pc_group_2) > thres)
        # pc_group_2[1:10,1:10]
        
        # differential network
        diff <- pc_group_2 - pc_group_1  # from group 1 to group 2
        # thres = 1e-3
        # sum(abs(diff) > thres)
        # diff[1:10, 1:10]

        # Permutation test using partial correlation
        if(permutation <= 0) 
            {stop("please provide a valid number of permutation (positive integer)")}
        else{
            m <- as.numeric(permutation)
            diff_p <- permutation_pc(m, data_list$p, data_list$n_group_1, data_list$n_group_2, 
                                     data_list$data_group_1, data_list$data_group_2, 
                                     rho_group_1_opt, rho_group_2_opt)
            p <- data_list$p
        }
        rm(m)

        # Calculating the positive and negative threshold based on the permutation result
        thres_left <- permutation_thres/2
        thres_right <- 1 - permutation_thres/2
        significant_thres <- permutation_thres(thres_left, thres_right, p, diff_p)
        rm(thres_left, thres_right)

        # get binary matrix
        significant_thres_p <- significant_thres$positive
        significant_thres_n <- significant_thres$negative
        binary_link <- matrix(0, p, p) # binary connection
        binary_link[diff < significant_thres_n] <- -1
        binary_link[diff > significant_thres_p] <- 1
        weight_link <- matrix(0, p, p) # weight connection
        weight_link[diff < significant_thres_n] <- diff[diff < significant_thres_n]
        weight_link[diff > significant_thres_p] <- diff[diff > significant_thres_p]
        # sum(diff < significant_thres_n)
        # sum(diff > significant_thres_p)
        # binary_link[1:10, 1:10]
        # weight_link[1:10, 1:10]
        # rowSums(abs(binary_link)) # node degree for differential networks
        # rm(diff_p)

        # Convert adjacent matrix into edge list
        i <- rep(seq_len(nrow(binary_link) - 1), times = (nrow(binary_link)-1):1)
        k <- unlist(lapply(2:nrow(binary_link), seq, nrow(binary_link)))
        binary_link_value <- binary_link[lower.tri(binary_link)]
        weight_link_value <- weight_link[lower.tri(weight_link)]
        edge <- cbind("Node1" = i, "Node2" = k, "Binary" = binary_link_value, 
                      "Weight" = weight_link_value)
        edge_dn <- edge[which(edge[,3] != 0),]
        edge_dn <- as.data.frame(edge_dn)

        # Compute p-values
        if (is.null(p_val) == TRUE) {
            # Calculate p-values using logistic regression if p-values are not provided by users
            pvalue <- pvalue_logit(data_list$data, data_list$class_label, data_list$id)
            p.value <- pvalue$p.value
            row.names(pvalue)<-NULL
        } else {     # If the p-value matrix is provided
            pvalue <- p_val
            p.value <- pvalue$p.value           # Extract p-values from the table provided
            row.names(pvalue)<-NULL
        }

        # trasfer p-value to z-score
        z_score <- abs(qnorm(1 - p.value/2))
        
        # calculate differntial network score
        dn_score <- compute_dns(binary_link, z_score)
        indeed_df <- cbind(pvalue, rowSums(abs(binary_link)), dn_score )
        colnames(indeed_df) <- c("ID", "P_value", "Node_Degree", "Activity_Score")
        indeed_df$P_value <- lapply(indeed_df$P_value, round, 3)
        indeed_df$Activity_Score <- lapply(indeed_df$Activity_Score, round, 1)
        indeed_df <- as.data.frame(lapply(indeed_df, unlist))
        # Recopy dataframe with index to help with ighraph formating
        indeed_df <- cbind(rownames(indeed_df) , data.frame(indeed_df, row.names=NULL) ) 
        colnames(indeed_df)[1] <- "Node"    # rename the previous index column as "Node"
        indeed_df<-indeed_df[order(indeed_df$Activity_Score, decreasing=TRUE), ]
        row.names(indeed_df) <- NULL      # remove index repeat

        # return
        result_list <-list(activity_score=indeed_df, diff_network=edge_dn)
        return (result_list)
    }
}

Try the INDEED package in your browser

Any scripts or data that you put into this service are public.

INDEED documentation built on Nov. 8, 2020, 11:12 p.m.