Nothing
#' Visualization of the clustered network for the continuous.discover function
#'
#' @param graph_pc the full pc network constructed from correlated PCs
#' @param membership_loading membership of PC loadings from community discovery
#' @param size_communities ordered (largest to smallest) size of the identified
#' communities
#' @param plot_size_cutoff cluster size cutoff (for cluster to be included in
#' the visualized PC network)
#' @param short_names shorter names of the loadings
#' @param output output file name
#'
#' @return an invisible list of the subsetted network and memberships (to
#' reproduce the plot)
#' @import igraph
#' @keywords internal
visualize_continuous_discover <- function(graph_pc,
membership_loading,
size_communities,
plot_size_cutoff,
short_names,
output) {
# Subsetting the network to exclude singletons and those that didn't pass the
# minimal cluster size cutoff.
ind_visualize <- size_communities >= plot_size_cutoff
cluster_sub <- as.integer(names(size_communities)[!ind_visualize])
graph_pc_sub <- delete.vertices(graph_pc,
V(graph_pc)[membership_loading %in%
cluster_sub])
membership_sub <- membership_loading[names(V(graph_pc_sub))]
list_membership_sub <-
lapply(as.integer(names(size_communities)[ind_visualize]),
function(x) names(membership_sub)[membership_sub == x])
pdf(output, width = 8, height = 8)
plot.igraph(graph_pc_sub,
mark.groups = list_membership_sub,
vertex.size =
degree(graph_pc_sub) / max(degree(graph_pc_sub)) * 15,
vertex.label = short_names[names(V(graph_pc_sub))],
edge.width = E(graph_pc_sub)$weight * 10)
dev.off()
invisible(list(graph_pc = graph_pc_sub,
list_membership = list_membership_sub))
}
#' Diagnostic visualization for continuous.discover function
#'
#' @param mat_vali matrix of maximum correlations between the cluster-specific
#' consensus loadings and top PC loadings from each batch
#' @param lvl_batch unique batches in the data
#' @param cos_cutoff the specified consine coefficient cutoff
#' @param output output file name
#'
#' @return the invisble ggplot2 plot object
#' @import ggplot2
#' @keywords internal
diagnostic_continuous_discover <- function(mat_vali,
lvl_batch,
cos_cutoff,
output) {
df_mali <- data.frame(mat_vali, check.names = FALSE)
df_mali$batch <- factor(lvl_batch, levels = lvl_batch)
df_plot <- tidyr::gather(df_mali,
key = community,
value = correlation,
-batch)
plot <- ggplot(df_plot,
aes(x = community,
y = correlation)) +
geom_boxplot(outlier.shape = NA) +
geom_point() +
geom_text(aes(label = batch)) +
geom_hline(yintercept = cos_cutoff,
color = "red") +
theme_bw() +
xlab("Clusters") + ylab("Validation correlation")
ggsave(plot = plot, filename = output,
device = "pdf",
width = 8,
height = 4 + ifelse(length(lvl_batch) > 4,
(length(lvl_batch) - 4) * 0.5,
0),
units = "in")
invisible(plot)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.