Nothing
## Converter for Spectronaut output
## output from Spectronaut : long format
## columns : Condition, BioReplicate, Run, ProteinName, FragmentIon, PeptideSequence
## ProductCharge, PrecursorCharge, IsotopeLabelType, Intensity,
## F.ExcludedFromQuantification
#' @export
SpectronauttoMSstatsFormat <- function(input,
annotation = NULL,
intensity = 'PeakArea',
filter_with_Qvalue = TRUE,
qvalue_cutoff = 0.01,
useUniquePeptide = TRUE,
fewMeasurements="remove",
removeProtein_with1Feature = FALSE,
summaryforMultipleRows=max){
if (is.null(fewMeasurements)) {
stop('** Please select \'remove\' or \'keep\' for \'fewMeasurements\'.')
}
if (!is.element(fewMeasurements, c('remove', 'keep'))) {
stop('** Please select \'remove\' or \'keep\' for \'fewMeasurements\'.')
}
## Check correct option or input
requiredinput.general <- c('F.FrgLossType', 'F.ExcludedFromQuantification',
'PG.ProteinGroups', 'EG.ModifiedSequence', 'FG.Charge',
'F.FrgIon',
'R.FileName', 'EG.Qvalue')
requiredinput.int <- c('F.PeakArea', 'F.NormalizedPeakArea')
requiredinput.charge <- c('F.Charge', 'F.FrgZ')
################################
## general input
################################
if (!all( requiredinput.general %in% colnames(input))) {
misssing.col <- requiredinput.general[!requiredinput.general %in% colnames(input)]
stop(paste0("** Please check the required input. The required input needs : ",
toString(missing.col)))
}
## intensity columns
if (sum( requiredinput.int %in% colnames(input) ) == 0) {
stop(paste0("** Please check the required input. The required input needs at least one of ",
toString(requiredinput.int)))
}
## general input
if (sum( requiredinput.charge %in% colnames(input) ) == 0) {
stop(paste0("** Please check the required input. The required input needs at least one of '",
toString(requiredinput.charge)))
}
## get annotation
if (is.null(annotation)) {
annotinfo <- unique(input[, c("R.FileName", "R.Condition", "R.Replicate")])
colnames(annotinfo) <- c('Run', 'Condition', 'BioReplicate')
} else {
## check annotation
required.annotation <- c('Condition', 'BioReplicate', 'Run')
if (!all(required.annotation %in% colnames(annotation))) {
missedAnnotation <- which(!(required.annotation %in% colnames(annotation)))
stop(paste("**", toString(required.annotation[missedAnnotation]),
"is not provided in Annotation. Please check the annotation file.",
"'Run' will be matched with 'R.FileName' "))
} else {
annotinfo <- annotation
}
}
## check annotation information
## Each Run should has unique information about condition and bioreplicate
check.annot <- xtabs(~Run, annotinfo)
if ( any(check.annot > 1) ) {
stop('** Please check annotation. Each MS run can\'t have multiple conditions or BioReplicates.' )
}
##############################
## 1. loss type : use only 'no loss'
##############################
input <- input[input$F.FrgLossType == 'noloss', ]
##############################
## 2. use only 'F.ExcludedFromQuantification == False' : XIC quality
##############################
if (is.logical(input$F.ExcludedFromQuantification)) {
input$F.ExcludedFromQuantification <- factor(input$F.ExcludedFromQuantification)
input$F.ExcludedFromQuantification <- factor(input$F.ExcludedFromQuantification,
labels = c('False', 'True'))
}
if (!all(unique(input$F.ExcludedFromQuantification) %in% c('False', 'True'))) {
stop( paste("** Please check the column called F.ExcludedFromQuantification. Only False or True are allowed in this column."))
}
input <- input[input$F.ExcludedFromQuantification == 'False', ]
##############################
## 3. get useful subset of column
##############################
if (is.element('F.Charge', colnames(input))) {
f.charge <- 'F.Charge'
} else if (is.element('F.FrgZ', colnames(input))) {
f.charge <- 'F.FrgZ'
} else {
f.charge <- NULL
}
if (is.element('PG.Qvalue', colnames(input))) {
pg.qvalue <- 'PG.Qvalue'
} else if(is.element('PG.Qvalue', colnames(input))) {
pg.qvalue <- 'PG.Qvalue'
} else {
pg.qvalue <- NULL
}
subsetcolumn <- c('PG.ProteinGroups', 'EG.ModifiedSequence', 'FG.Charge',
'F.FrgIon', f.charge,
'R.FileName',
'EG.Qvalue', pg.qvalue)
if (intensity == 'NormalizedPeakArea') {
## use normalized peak area by SN
input <- input[, c(subsetcolumn, 'F.NormalizedPeakArea')]
} else {
## use original peak area without any normalization
input <- input[, c(subsetcolumn, 'F.PeakArea')]
}
colnames(input)[colnames(input) == 'PG.ProteinGroups'] <- 'ProteinName'
colnames(input)[colnames(input) == 'EG.ModifiedSequence'] <- 'PeptideSequence'
colnames(input)[colnames(input) == 'FG.Charge'] <- 'PrecursorCharge'
colnames(input)[colnames(input) == 'F.FrgIon'] <- 'FragmentIon'
colnames(input)[colnames(input) == f.charge] <- 'ProductCharge'
colnames(input)[colnames(input) == 'R.FileName'] <- 'Run'
colnames(input)[colnames(input) == 'F.PeakArea'] <- 'Intensity'
colnames(input)[colnames(input) == 'F.NormalizedPeakArea'] <- 'Intensity'
colnames(input)[colnames(input) == 'EG.Qvalue'] <- 'Qvalue'
##############################
## 4. filter by Qvalue
##############################
## protein FDR
if (is.element('PG.Qvalue', colnames(input))) {
input[!is.na(input$PG.Qvalue) & input$PG.Qvalue > 0.01, "Intensity"] <- NA
message('** Intensities with great than 0.01 in PG.Qvalue are replaced with NA.')
input <- input[, -which(colnames(input) %in% 'PG.Qvalue')]
}
## precursor qvalue
if (filter_with_Qvalue) {
if (!is.element(c('Qvalue'), colnames(input))) {
stop('** EG.Qvalue column is needed in order to filter out by Qvalue. Please add EG.Qvalue column in the input.')
} else {
## when qvalue > qvalue_cutoff, replace with zero for intensity
input[!is.na(input$Qvalue) & input$Qvalue > qvalue_cutoff, "Intensity"] <- 0
message(paste0('** Intensities with great than ', qvalue_cutoff, ' in EG.Qvalue are replaced with zero.'))
}
}
##############################
## 5. remove featuares with all na or zero
## some rows have all zero values across all MS runs. They should be removed.
##############################
input$fea <- paste(input$PeptideSequence,
input$PrecursorCharge,
input$FragmentIon,
input$ProductCharge,
sep="_")
inputtmp <- input[!is.na(input$Intensity) & input$Intensity > 1, ]
count <- inputtmp %>% group_by(fea) %>% summarise(length=length(Intensity))
## get feature with all NA or zeros
getfea <- count[count$length > 0, 'fea']
if (nrow(getfea) > 0) {
nfea.remove <- length(unique(input$fea))-nrow(getfea)
input <- input[which(input$fea %in% getfea$fea), ]
message(paste0('** ', nfea.remove, ' features have all NAs or zero intensity values and are removed.'))
}
rm(inputtmp)
################################################
## 6. remove peptides which are used in more than one protein
## we assume to use unique peptide
################################################
if (useUniquePeptide) {
pepcount <- unique(input[, c("ProteinName", "PeptideSequence")]) ## Protein.group.IDs or Sequence
pepcount$PeptideSequence <- factor(pepcount$PeptideSequence)
## count how many proteins are assigned for each peptide
structure <- pepcount %>% group_by(PeptideSequence) %>% summarise(length=length(ProteinName))
remove_peptide <- structure[structure$length != 1, ]
## remove the peptides which are used in more than one protein
if(nrow(remove_peptide) != 0){
input <- input[-which(input$PeptideSequence %in% remove_peptide$PeptideSequence), ]
message('** Peptides, that are used in more than one proteins, are removed.')
} else {
message('** All peptides are unique peptides in proteins.')
}
rm(structure)
rm(remove_peptide)
}
##############################
## 7. remove features which has 1 or 2 measurements across runs
##############################
if (fewMeasurements == "remove"){
## it is the same across experiments. # measurement per feature.
xtmp <- input[!is.na(input$Intensity) & input$Intensity > 0, ]
count_measure <- xtabs( ~fea, xtmp)
remove_feature_name <- count_measure[count_measure < 3]
if (length(remove_feature_name) > 0) {
input <- input[-which(input$fea %in% names(remove_feature_name)), ]
message(paste0('** ', length(remove_feature_name), ' features have 1 or 2 intensities across runs and are removed.'))
}
}
##############################
## 8. remove proteins with only one peptide and charge per protein
##############################
if (removeProtein_with1Feature) {
## remove protein which has only one peptide
tmp <- unique(input[, c("ProteinName", 'fea')])
tmp$ProteinName <- factor(tmp$ProteinName)
count <- xtabs( ~ ProteinName, data=tmp)
lengthtotalprotein <- length(count)
removepro <- names(count[count <= 1])
if (length(removepro) > 0) {
input <- input[-which(input$ProteinName %in% removepro), ]
message(paste0("** ", length(removepro),
' proteins, which have only one feature in a protein, are removed among ',
lengthtotalprotein, ' proteins.'))
} else {
message("** All proteins have at least two features.")
}
}
##############################
## 9. remove multiple measurements per feature and run
##############################
count <- aggregate(Intensity ~ fea, data=input, FUN=length)
## if any feature has more number of total MS runs,
if (any(unique(count$Intensity) > length(unique(input$Run)))) {
## maximum or sum up abundances among intensities for identical features within one run
input_w <- dcast( ProteinName + PeptideSequence + PrecursorCharge + FragmentIon + ProductCharge ~ Run, data=input,
value.var='Intensity',
fun.aggregate=summaryforMultipleRows, na.rm=T,
fill=NA_real_)
## reformat for long format
input <- melt(input_w, id=c('ProteinName', 'PeptideSequence', 'PrecursorCharge', 'FragmentIon', 'ProductCharge'))
colnames(input)[which(colnames(input) %in% c('variable','value'))] <- c("Run","Intensity")
message('** Multiple measurements in a feature and a run are summarized by summaryforMultipleRows.')
} else {
## remove column, named as 'fea'
input <- input[, -which(colnames(input) %in% c('fea', 'Qvalue'))]
message('** No multiple measurements in a feature and a run.')
}
##############################
## 10. merge annotation
##############################
input <- merge(input, annotinfo, all=TRUE)
input.final <- data.frame("ProteinName" = input$ProteinName,
"PeptideSequence" = input$PeptideSequence,
"PrecursorCharge" = input$PrecursorCharge,
"FragmentIon" = input$FragmentIon,
"ProductCharge" = input$ProductCharge,
"IsotopeLabelType" = "L",
"Condition" = input$Condition,
"BioReplicate" = input$BioReplicate,
"Run" = input$Run,
"Intensity" = input$Intensity)
input <- input.final
input$ProteinName <- factor(input$ProteinName)
rm(input.final)
return(input)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.