Nothing
## put OTUset methods here
# Access slots
setMethod(id,"OTUsetB",
function(object) slot(object, "id"))
setMethod(otuID,".OTUset",
function(object) slot(object, "otuID"))
setMethod(notus, ".OTUset",
function(object) length(unique(otuID(object))))
# show
setMethod(show, ".OTUset",
function(object) {
cat("Class:", class(object),"\n")
if ((class(object)=="OTUsetF")||(class(object)=="OTUsetQ")){
cat("Number of Sequences:", length(sread(object)),"reads\n")
cat("Sequence Width:", paste(range(width(sread(object))),collapse=".."),"cycles\n")
}
cat("Number of OTUs:",notus(object),"\n")
cat("Number of Samples:",nsamples(object),"\n")
if (length(sampleNames((object)))>0) {
cat("sampleData: T")
cat("\tncol:", ncol(sData(object)),"\n")
}else cat("sampleData: F\n")
if (length(assignmentNames(object))>0){
cat("assignmentData: T")
cat("\tncol:", ncol(aData(object)),"\n")
}else cat("assignmentData: F\n")
})
## summary information
setMethod(abundance, ".OTUset",
function(object,assignmentCol, sampleCol, weighted=F,collab,...){
s<-sampleID(object)
## make list of OTUs or assignments
if (!missing(assignmentCol)){
g<-aData(object)[,assignmentCol]
c<-match(otuID(object),row.names(aData(object)))
o<-g[c]
}else o<-otuID(object)
## make list of samples or sample characteristics
if (!missing(sampleCol)){
a<-sData(object)[,sampleCol]
t<-match(sampleID(object), row.names(sData(object)))
s<-a[t]
}else s<-sampleID(object)
abund<-table(o,s)
if (weighted){abund<-apply(abund,2,function(j) j/sum(j))}
if (!missing(collab)) colnames(abund)<-sData(object)[,collab][match(colnames(abund),row.names(sData(object)))]
return(abund)
}
)
setMethod(clusterSamples, ".OTUset",
function(object, assignmentCol, collab, distmethod='bray', clustermethod='complete',...){
if (!missing(collab) && !missing(assignmentCol)){
a<-t(abundance(object, collab=collab, weighted=T,assignmentCol=assignmentCol))
}else if (!missing(collab)){
a<-t(abundance(object, collab=collab, weighted=T))
}else if (!missing(assignmentCol)){
a<-t(abundance(object, weighted=T, assignmentCol=assignmentCol))
}else a<-t(abundance(object, weighted=T))
d<-vegdist(a, method=distmethod)
rn<-row.names(as.matrix(d))
clust<-hclust(d,method=clustermethod)
plot(clust,labels=rn, sub=NA, xlab=NA,...)
return(clust)
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.