Nothing
#' @title RNASeqDifferentialAnalysis_CMD
#'
#' @description
#' This function will run differential analysis on ballgown,
#' DESeq2 and edgeR in R shell. \cr
#' This function do following things : \cr
#' \enumerate{
#' \item ballgown analysis \cr
#' Raw reads are normalized into FPKM values \cr
#' The main statistic test in ballgown is paramatic F-test comparing nested
#' linear models \cr
#' \item DESeq2 analysis \cr
#' Median of rations normalization(MRN) is used in DESeq2 for raw reads
#' count normalization. \cr
#' Sequencing depth and RNA composition is taken into consideration is this
#' normalization method. \cr
#' The main statistic test in DESeq2 is negative binomial distribution. \cr
#' \item edgeR analysis \cr
#' Raw reads are normalized by TMM and library size.
#' (run \code{calcNormFactors()} to get a DGEList,
#' and then run \code{cpm()} on that DGEList) \cr
#' The main statistic test in edgeR is trimmed mean of M-values(TMM).\cr
#' }
#' If you want to run differential analysis on ballgown,
#' DESeq2, edgeR for the following RNA-Seq workflow in R shell,
#' please see \code{RNASeqDifferentialAnalysis()} function.
#'
#' @param RNASeqRParam S4 object instance of
#' experiment-related parameters
#' @param which.trigger Default value is \code{OUTSIDE}. User should not change
#' this value.
#' @param INSIDE.path.prefix Default value is \code{NA}. User should not change
#' this value.
#' @param Pre_DE.visualization Default \code{TRUE}. Whether to visualize pre-DE
#' analysis results.
#' @param Post_DE.visualization Default \code{TRUE}. Whether to visualize
#' post-DE analysis results.
#' @param ballgown.run Default \code{TRUE}. Logical value whether to run
#' ballgown differential analysis.
#' @param ballgown.pval Default \code{0.05}. Set the threshold of ballgown
#' p-value to filter out differential expressed gene.
#' @param ballgown.log2FC Default \code{1}. Set the threshold of ballgown
#' log2 fold change to filter out differential expressed gene.
#' @param DESeq2.run Default \code{TRUE}. Logical value whether to run
#' DESeq2 differential analysis.
#' @param DESeq2.pval Default \code{0.05}. Set the threshold of DESeq2 p-value
#' to filter out differential expressed gene.
#' @param DESeq2.log2FC Default \code{1}. Set the threshold of DESeq2 log2
#' fold change to filter out differential expressed gene.
#' @param edgeR.run Default \code{TRUE}. Logical value whether to run
#' edgeR differential analysis.
#' @param edgeR.pval Default \code{0.05}. Set the threshold of edgeR p-value
#' to filter out differential expressed gene.
#' @param edgeR.log2FC Default \code{1}. Set the threshold of edgeR log2
#' fold change to filter out differential expressed gene.
#' @param run Default value is \code{TRUE}. If \code{TRUE},
#' 'Rscript/Environment_Set.R' will be created and executed. The output log
#' will be stored in 'Rscript_out/Environment_Set.Rout'. If \code{False},
#' 'Rscript/Environment_Set.R' will be created without executed.
#' @param check.s4.print Default \code{TRUE}. If \code{TRUE}, the result of
#' checking \code{RNASeqRParam} will be reported in
#' 'Rscript_out/Environment_Set.Rout'. If \code{FALSE}, the result of checking
#' \code{RNASeqRParam} will not be in
#' 'Rscript_out/Environment_Set.Rout'.
#'
#' @return None
#' @export
#' @author Kuan-Hao Chao
#' @examples
#' data(yeast)
#' \dontrun{
#' RNASeqDifferentialAnalysis_CMD(RNASeqRParam = yeast)}
RNASeqDifferentialAnalysis_CMD <- function(RNASeqRParam,
which.trigger = "OUTSIDE",
INSIDE.path.prefix = NA,
Pre_DE.visualization = TRUE,
Post_DE.visualization = TRUE,
ballgown.run = TRUE,
ballgown.pval = 0.05,
ballgown.log2FC = 1,
DESeq2.run = TRUE,
DESeq2.pval = 0.1,
DESeq2.log2FC = 1,
edgeR.run = TRUE,
edgeR.pval = 0.05,
edgeR.log2FC = 1,
run = TRUE,
check.s4.print = TRUE) {
# check input param
CheckS4Object_All(RNASeqRParam, check.s4.print)
CheckOperatingSystem(FALSE)
path.prefix <- "@"(RNASeqRParam, path.prefix)
INSIDE.path.prefix <- "@"(RNASeqRParam, path.prefix)
saveRDS(RNASeqRParam,
file = paste0(INSIDE.path.prefix,
"gene_data/RNASeqRParam.rds"))
fileConn <- file(paste0(path.prefix, "Rscript/Differential_Analysis.R"))
first <- "library(RNASeqR)"
second <- paste0("RNASeqDifferentialAnalysis(RNASeqRParam = 'INSIDE'",
", which.trigger = 'INSIDE'",
", INSIDE.path.prefix = '", INSIDE.path.prefix,
"', Pre_DE.visualization = ", Pre_DE.visualization,
", Post_DE.visualization = ", Post_DE.visualization,
", ballgown.run = ", ballgown.run,
", ballgown.pval = ", ballgown.pval,
", ballgown.log2FC = ", ballgown.log2FC,
", DESeq2.run = ", DESeq2.run,
", DESeq2.pval = ", DESeq2.pval,
", DESeq2.log2FC = ", DESeq2.log2FC,
", edgeR.run = ", edgeR.run,
", edgeR.pval = ", edgeR.pval,
", edgeR.log2FC = ", edgeR.log2FC,")")
writeLines(c(first, second), fileConn)
close(fileConn)
message("\u2605 '", path.prefix,
"Rscript/Differential_Analysis.R' has been created.\n")
if (run) {
R.home.lib <- R.home()
R.home.bin <- gsub("/lib/R", "/bin/R", R.home.lib)
system2(command = "nohup",
args = paste0(R.home.bin, " CMD BATCH ",
path.prefix,
"Rscript/Differential_Analysis.R ",
path.prefix,
"Rscript_out/Differential_Analysis.Rout"),
stdout = "", wait = FALSE)
message("\u2605 Tools are installing in the background. ",
"Check current progress in '",
path.prefix, "Rscript_out/Differential_Analysis.Rout'\n\n")
}
}
#' @title RNASeqDifferentialAnalysis
#'
#' @description
#' This function will run differential analysis on ballgown,
#' DESeq2 and edgeR in background. \cr
#' This function do following things : \cr
#' \enumerate{
#' \item ballgown analysis \cr
#' Raw reads are normalized into FPKM values \cr
#' The main statistic test in ballgown is paramatic F-test comparing nested
#' linear models \cr
#' \item DESeq2 analysis \cr
#' Median of rations normalization(MRN) is used in DESeq2 for raw reads
#' count normalization. \cr
#' Sequencing depth and RNA composition is taken into consideration is this
#' normalization method. \cr
#' The main statistic test in DESeq2 is negative binomial distribution. \cr
#' \item edgeR analysis \cr
#' Raw reads are normalized by TMM and library size.
#' (run \code{calcNormFactors()} to get a DGEList,
#' and then run \code{cpm()} on that DGEList) \cr
#' The main statistic test in edgeR is trimmed mean of M-values(TMM).\cr
#' }
#' If you want to run differential analysis on ballgown,
#' DESeq2, edgeR for the following RNA-Seq workflow in background,
#' please see \code{RNASeqDifferentialAnalysis()} function.
#'
#' @param RNASeqRParam S4 object instance of experiment-related
#' parameters
#' @param which.trigger Default value is \code{OUTSIDE}. User should not change
#' this value.
#' @param INSIDE.path.prefix Default value is \code{NA}. User should not change
#' this value.
#' @param Pre_DE.visualization Default \code{TRUE}. Whether to visualize pre-DE
#' analysis results.
#' @param Post_DE.visualization Default \code{TRUE}. Whether to visualize
#' post-DE analysis results.
#' @param ballgown.run Default \code{TRUE}. Logical value whether to run
#' ballgown differential analysis.
#' @param ballgown.pval Default \code{0.05}. Set the threshold of ballgown
#' p-value to filter out differential expressed gene.
#' @param ballgown.log2FC Default \code{1}. Set the threshold of ballgown
#' log2 fold change to filter out differential expressed gene.
#' @param DESeq2.run Default \code{TRUE}. Logical value whether to run
#' DESeq2 differential analysis.
#' @param DESeq2.pval Default \code{0.05}. Set the threshold of DESeq2 p-value
#' to filter out differential expressed gene.
#' @param DESeq2.log2FC Default \code{1}. Set the threshold of DESeq2 log2
#' fold change to filter out differential expressed gene.
#' @param edgeR.run Default \code{TRUE}. Logical value whether to run
#' edgeR differential analysis.
#' @param edgeR.pval Default \code{0.05}. Set the threshold of edgeR p-value
#' to filter out differential expressed gene.
#' @param edgeR.log2FC Default \code{1}. Set the threshold of edgeR log2
#' fold change to filter out differential expressed gene.
#' @param check.s4.print Default \code{TRUE}. If \code{TRUE}, the result of
#' checking \code{RNASeqRParam} will be reported in
#' 'Rscript_out/Environment_Set.Rout'. If \code{FALSE}, the result of checking
#' \code{RNASeqRParam} will not be in
#' 'Rscript_out/Environment_Set.Rout'.
#'
#' @return None
#' @export
#' @author Kuan-Hao Chao
#' @examples
#' data(yeast)
#' \dontrun{
#' RNASeqDifferentialAnalysis(RNASeqRParam = yeast)}
RNASeqDifferentialAnalysis <- function(RNASeqRParam,
which.trigger = "OUTSIDE",
INSIDE.path.prefix = NA,
Pre_DE.visualization = TRUE,
Post_DE.visualization = TRUE,
ballgown.run = TRUE,
ballgown.pval = 0.05,
ballgown.log2FC = 1,
DESeq2.run = TRUE,
DESeq2.pval = 0.1,
DESeq2.log2FC = 1,
edgeR.run = TRUE,
edgeR.pval = 0.05,
edgeR.log2FC = 1,
check.s4.print = TRUE) {
CheckOperatingSystem(FALSE)
# If `which.trigger` is OUTSIDE, then directory must be built
# If `which.trigger` is INSIDE, then directory must not be
# built here(will created in CMD)
if (isS4(RNASeqRParam) &
which.trigger == "OUTSIDE" &
is.na(INSIDE.path.prefix)) {
# This is an external call!!
# Check the S4 object(user input)
CheckS4Object_All(RNASeqRParam, check.s4.print)
} else if (RNASeqRParam == "INSIDE" &
which.trigger == "INSIDE" &
!is.na(INSIDE.path.prefix)) {
# This is an internal call!!
# Load the S4 object that saved in CMD process
RNASeqRParam <- readRDS(paste0(INSIDE.path.prefix,
"gene_data/RNASeqRParam.rds"))
}
path.prefix <- "@"(RNASeqRParam, path.prefix)
genome.name <- "@"(RNASeqRParam, genome.name)
sample.pattern <- "@"(RNASeqRParam, sample.pattern)
independent.variable <- "@"(RNASeqRParam, independent.variable)
case.group <- "@"(RNASeqRParam, case.group)
control.group <- "@"(RNASeqRParam, control.group)
# 1. Pre-DE assessment visualization
phenoData.result<- phenoDataWrap(path.prefix,
independent.variable,
case.group,
control.group)
my_colors <- phenoData.result$my_colors
if (Pre_DE.visualization) {
PreRNASeqDifferentialAnalysis(path.prefix = path.prefix,
sample.pattern = sample.pattern)
}
if (file.exists(paste0(path.prefix,
"RNASeq_results/Alignment_Report/",
"Alignment_report_reads.csv")) &
file.exists(paste0(path.prefix,
"RNASeq_results/Alignment_Report/",
"Overall_Mapping_rate.csv"))) {
AlignmentPlot(path.prefix,
independent.variable,
case.group,
control.group,
phenoData.result,
my_colors)
}
message("\u2618\u2618\u2618\u2618\u2618\u2618\u2618\u2618 ",
"Start Differential Expression Analysis ",
"\u2618\u2618\u2618\u2618\u2618\u2618\u2618\u2618\n")
# 2. DE analysis
if (ballgown.run) {
BallgownAnalysis(path.prefix,
genome.name,
sample.pattern,
independent.variable,
case.group,
control.group,
ballgown.pval,
ballgown.log2FC,
phenoData.result)
}
raw.read.avail <- RawReadCountAvailability(path.prefix)
if (raw.read.avail) {
if (DESeq2.run) {
DESeq2RawCountAnalysis(path.prefix,
independent.variable,
case.group,
control.group,
DESeq2.pval,
DESeq2.log2FC,
phenoData.result)
}
if (edgeR.run) {
edgeRRawCountAnalysis(path.prefix,
independent.variable,
case.group,
control.group,
edgeR.pval,
edgeR.log2FC,
phenoData.result)
}
}
if (Post_DE.visualization) {
# 3. Post-DE assessment visualization
PostRNASeqDifferentialAnalysis(path.prefix = path.prefix,
sample.pattern = sample.pattern)
}
}
PreRNASeqDifferentialAnalysis <- function(path.prefix, sample.pattern) {
message("\u269C\u265C\u265C\u265C RNASeqDifferentialAnalysis()' ",
"environment pre-check ...\n")
validity <- TRUE
if (!isTRUE(validity)) {
stop("RNASeqDifferentialAnalysis() environment ERROR")
}
message("(\u2714) : RNASeqDifferentialAnalysis() pre-check is valid\n\n")
}
PostRNASeqDifferentialAnalysis <- function(path.prefix, sample.pattern) {
message("\u269C\u265C\u265C\u265C RNASeqDifferentialAnalysis()' ",
"environment post-check ...\n")
validity <- TRUE
if (!isTRUE(validity)) {
stop("RNASeqDifferentialAnalysis() post-check ERROR")
}
message("(\u2714) : RNASeqDifferentialAnalysis() post-check is valid\n\n")
message("\u2605\u2605\u2605\u2605\u2605\u2605\u2605\u2605\u2605\u2605",
"\u2605\u2605\u2605\u2605\u2605\u2605\u2605\u2605\u2605\u2605",
"\u2605\u2605\u2605\u2605\u2605\u2605\u2605\u2605\u2605\u2605",
"\u2605\n")
message("\u2605\u2605\u2605\u2605\u2605\u2605\u2605\u2605\u2605\u2605",
"\u2605\u2605 Success!! \u2605\u2605\u2605\u2605\u2605\u2605",
"\u2605\u2605\u2605\u2605\u2605\u2605\n")
message("\u2605\u2605\u2605\u2605\u2605\u2605\u2605\u2605\u2605\u2605",
"\u2605\u2605\u2605\u2605\u2605\u2605\u2605\u2605\u2605\u2605",
"\u2605\u2605\u2605\u2605\u2605\u2605\u2605\u2605\u2605\u2605",
"\u2605\n")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.