Description Usage Arguments Details Value Examples
The function takes as input a gene expression matrix as well as the index of negative control genes. It estimates unwanted variation from these control genes, and removes them by regression, using ridge and/or rank regularization.
1 | naiveRandRUV(Y, cIdx, nu.coeff=0.001, k=min(nrow(Y), length(cIdx)), tol=1e-6)
|
Y |
Expression matrix where the rows are the samples and the columns are the genes. |
cIdx |
Column index of the negative control genes in Y, for estimation of unwanted variation. |
nu.coeff |
Regularization parameter for the unwanted variation. |
k |
Desired rank for the estimated unwanted variation term. |
tol |
Smallest ratio allowed between a squared singular value of Y[, cIdx] and the largest of these squared singular values. All smaller singular values are discarded. |
In terms of model, the rank k can be thought of as the number of independent sources of unwanted variation in the data (i.e., if one source is a linear combination of other sources, it does not increase the rank). The ridge nu.coeff should be inversely proportional to the (expected) magnitude of the unwanted variation.
In practice, even if the real number of independent sources of unwanted variation (resp. their magnitude) is known, using a smaller k (resp., larger ridge) could yield better corrections because one may not have enough samples to effectively estimate all the effects.
More intuition and guidance on the practical choice of these parameters are available in the paper (http://biostatistics.oxfordjournals.org/content/17/1/16.full) and its supplement (http://biostatistics.oxfordjournals.org/content/suppl/2015/08/17/kxv026.DC1/kxv026supp.pdf). In particular: - Equation 2.3 in the manuscript gives an interpretation of the ridge parameter in terms of a probabilistic model. - Section 5.1 of the manuscript provides guidelines to select both parameters on real data. - Section 3 of the supplement compares the effect of reducing the rank and increasing the ridge. - Section 4 of the supplement gives a detailed discussion of how to select the ridge parameter on a real example.
A matrix
corresponding to the gene expression after
substraction of the estimated unwanted variation term.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 | if(require('RUVnormalizeData')){
## Load the data
data('gender', package='RUVnormalizeData')
Y <- t(exprs(gender))
X <- as.numeric(phenoData(gender)$gender == 'M')
X <- X - mean(X)
X <- cbind(X/(sqrt(sum(X^2))))
chip <- annotation(gender)
## Extract regions and labs for plotting purposes
lregions <- sapply(rownames(Y),FUN=function(s) strsplit(s,'_')[[1]][2])
llabs <- sapply(rownames(Y),FUN=function(s) strsplit(s,'_')[[1]][3])
## Dimension of the factors
m <- nrow(Y)
n <- ncol(Y)
p <- ncol(X)
Y <- scale(Y, scale=FALSE) # Center gene expressions
cIdx <- which(featureData(gender)$isNegativeControl) # Negative control genes
## Prepare plots
annot <- cbind(as.character(sign(X)))
colnames(annot) <- 'gender'
plAnnots <- list('gender'='categorical')
lab.and.region <- apply(rbind(lregions, llabs),2,FUN=function(v) paste(v,collapse='_'))
gender.col <- c('-1' = "deeppink3", '1' = "blue")
## Remove platform effect by centering.
Y[chip=='hgu95a.db',] <- scale(Y[chip=='hgu95a.db',], scale=FALSE)
Y[chip=='hgu95av2.db',] <- scale(Y[chip=='hgu95av2.db',], scale=FALSE)
## Number of genes kept for clustering, based on their variance
nKeep <- 1260
##--------------------------
## Naive RUV-2 no shrinkage
##--------------------------
k <- 20
nu <- 0
## Correction
nsY <- naiveRandRUV(Y, cIdx, nu.coeff=0, k=k)
## Clustering of the corrected data
sdY <- apply(nsY, 2, sd)
ssd <- sort(sdY,decreasing=TRUE,index.return=TRUE)$ix
kmres2ns <- kmeans(nsY[,ssd[1:nKeep],drop=FALSE],centers=2,nstart=200)
vclust2ns <- kmres2ns$cluster
nsScore <- clScore(vclust2ns, X)
## Plot of the corrected data
svdRes2ns <- NULL
svdRes2ns <- svdPlot(nsY[, ssd[1:nKeep], drop=FALSE],
annot=annot,
labels=lab.and.region,
svdRes=svdRes2ns,
plAnnots=plAnnots,
kColors=gender.col, file=NULL)
##--------------------------
## Naive RUV-2 + shrinkage
##--------------------------
k <- m
nu.coeff <- 1e-2
## Correction
nY <- naiveRandRUV(Y, cIdx, nu.coeff=nu.coeff, k=k)
## Clustering of the corrected data
sdY <- apply(nY, 2, sd)
ssd <- sort(sdY,decreasing=TRUE,index.return=TRUE)$ix
kmres2 <- kmeans(nY[,ssd[1:nKeep],drop=FALSE],centers=2,nstart=200)
vclust2 <- kmres2$cluster
nScore <- clScore(vclust2,X)
## Plot of the corrected data
svdRes2 <- NULL
svdRes2 <- svdPlot(nY[, ssd[1:nKeep], drop=FALSE],
annot=annot,
labels=lab.and.region,
svdRes=svdRes2,
plAnnots=plAnnots,
kColors=gender.col, file=NULL)
}
|
Loading required package: RUVnormalizeData
Loading required package: Biobase
Loading required package: BiocGenerics
Loading required package: parallel
Attaching package: ‘BiocGenerics’
The following objects are masked from ‘package:parallel’:
clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
clusterExport, clusterMap, parApply, parCapply, parLapply,
parLapplyLB, parRapply, parSapply, parSapplyLB
The following objects are masked from ‘package:stats’:
IQR, mad, sd, var, xtabs
The following objects are masked from ‘package:base’:
anyDuplicated, append, as.data.frame, basename, cbind, colnames,
dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
union, unique, unsplit, which.max, which.min
Welcome to Bioconductor
Vignettes contain introductory material; view with
'browseVignettes()'. To cite Bioconductor, see
'citation("Biobase")', and for packages 'citation("pkgname")'.
Warning message:
In naiveRandRUV(Y, cIdx, nu.coeff = nu.coeff, k = k) :
k larger than the rank of Y[, cIdx]. Using k=82 instead
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.