R/SIMLR.R

#' perform the SIMLR clustering algorithm
#' 
#' @title SIMLR
#'
#' @examples
#' SIMLR(X = BuettnerFlorian$in_X, c = BuettnerFlorian$n_clust, cores.ratio = 0)
#' 
#' @param X an (m x n) data matrix of gene expression measurements of individual cells or
#' and object of class SCESet
#' @param c number of clusters to be estimated over X
#' @param no.dim number of dimensions
#' @param k tuning parameter
#' @param if.impute should I traspose the input data?
#' @param normalize should I normalize the input data?
#' @param cores.ratio ratio of the number of cores to be used when computing the multi-kernel
#'
#' @return clusters the cells based on SIMLR and their similarities
 
#' @return list of 8 elements describing the clusters obtained by SIMLR, of which y are the resulting clusters: 
#'		y = results of k-means clusterings,
#'  	S = similarities computed by SIMLR, 
#'  	F = results from network diffiusion, 
#'  	ydata = data referring the the results by k-means,
#'  	alphaK = clustering coefficients,
#'  	execution.time = execution time of the present run,
#'  	converge = iterative convergence values by T-SNE,
#'  	LF = parameters of the clustering
#' 
#' @export SIMLR
#' @importFrom parallel stopCluster makeCluster detectCores clusterEvalQ
#' @importFrom parallel parLapply
#' @importFrom stats dnorm kmeans pbeta rnorm
#' @importFrom methods is
#' @import Matrix
#' @useDynLib SIMLR projsplx
#'
"SIMLR" <- function( X, c, no.dim = NA, k = 10, if.impute = FALSE, normalize = FALSE, cores.ratio = 1 ) {

    # convert SCESet    
    if (is(X, "SCESet")) {
        cat("X is and SCESet, converting to input matrix.\n")
        X = X@assayData$exprs
    }
    # set any required parameter to the defaults
    if(is.na(no.dim)) {
        no.dim = c
    }
    # check the if.impute parameter
    if (if.impute == TRUE) {
        X = t(X)
        X_zeros = which(X==0,arr.ind=TRUE)
        if(length(X_zeros)>0) {
            R_zeros = as.vector(X_zeros[,"row"])
            C_zeros = as.vector(X_zeros[,"col"])
            ind = (C_zeros - 1) * nrow(X) + R_zeros
            X[ind] = as.vector(colMeans(X))[C_zeros]
        }
        X = t(X)
    }
    # check the normalize parameter
    if(normalize == TRUE) {
        X = t(X)
        X = X - min(as.vector(X))
        X = X / max(as.vector(X))
        C_mean = as.vector(colMeans(X))
        X = apply(X,MARGIN=1,FUN=function(x) return(x-C_mean))
    }
    
    # start the clock to measure the execution time
    ptm = proc.time()
    
    # set some parameters
    NITER = 30
    num = ncol(X)
    r = -1
    beta = 0.8
    
    cat("Computing the multiple Kernels.\n")
    D_Kernels = multiple.kernel(t(X),cores.ratio)
    
    # set up some parameters
    alphaK = 1 / rep(length(D_Kernels),length(D_Kernels))
    distX = array(0,c(dim(D_Kernels[[1]])[1],dim(D_Kernels[[1]])[2]))
    for (i in 1:length(D_Kernels)) {
        distX = distX + D_Kernels[[i]]
    }
    distX = distX / length(D_Kernels)
    
    # sort distX for rows
    res = apply(distX,
        MARGIN=1,
        FUN=function(x) return(sort(x,index.return = TRUE)))
    distX1 = array(0,c(nrow(distX),ncol(distX)))
    idx = array(0,c(nrow(distX),ncol(distX)))
    for(i in 1:nrow(distX)) {
        distX1[i,] = res[[i]]$x
        idx[i,] = res[[i]]$ix
    }
    
    A = array(0,c(num,num))
    di = distX1[,2:(k+2)]
    rr = 0.5 * (k * di[,k+1] - apply(di[,1:k],MARGIN=1,FUN=sum))
    id = idx[,2:(k+2)]
    
    numerator = (apply(array(0,c(length(di[,k+1]),dim(di)[2])),
        MARGIN = 2,
        FUN = function(x) {x=di[,k+1]}) - di)
    temp = (k*di[,k+1] - apply(di[,1:k],MARGIN=1,FUN=sum) + .Machine$double.eps)
    denominator = apply(array(0,c(length(temp),dim(di)[2])),
        MARGIN = 2,
        FUN = function(x) {x=temp})
    temp = numerator / denominator
    a = apply(array(0,c(length(t(1:num)),dim(di)[2])),
        MARGIN = 2,
        FUN = function(x) {x=1:num})
    A[cbind(as.vector(a),as.vector(id))] = as.vector(temp)
    if(r<=0) {
        r = mean(rr)
    }
    lambda = max(mean(rr),0)
    A[is.nan(A)] = 0
    A0 = (A + t(A)) / 2
    S0 = max(max(distX)) - distX
    
    cat("Performing network diffiusion.\n")
    S0 = network.diffusion(S0,k)
    
    # compute dn
    S0 = dn(S0,'ave')
    S = S0
    D0 = diag(apply(S,MARGIN=2,FUN=sum))
    L0 = D0 - S
    
    eig1_res = eig1(L0,c,0)
    F_eig1 = eig1_res$eigvec
    temp_eig1 = eig1_res$eigval
    evs_eig1 = eig1_res$eigval_full
    
    # perform the iterative procedure NITER times
    converge = vector()
    for(iter in 1:NITER) {
        cat("Iteration: ",iter,"\n")
        
        distf = L2_distance_1(t(F_eig1),t(F_eig1))
        A = array(0,c(num,num))
        b = idx[,2:dim(idx)[2]]
        a = apply(array(0,c(num,ncol(b))),MARGIN=2,FUN=function(x){ x = 1:num })
        inda = cbind(as.vector(a),as.vector(b))
        ad = (distX[inda]+lambda*distf[inda])/2/r
        dim(ad) = c(num,ncol(b))
        
        # call the c function for the optimization
        c_input = -t(ad)
        c_output = t(ad)
        ad = t(.Call("projsplx", c_input, c_output))
        
        A[inda] = as.vector(ad)
        A[is.nan(A)] = 0
        A = (A + t(A)) / 2
        S = (1 - beta) * S + beta * A
        S = network.diffusion(S,k)
        D = diag(apply(S,MARGIN=2,FUN=sum))
        L = D - S
        F_old = F_eig1
        eig1_res = eig1(L,c,0)
        F_eig1 = eig1_res$eigvec
        temp_eig1 = eig1_res$eigval
        ev_eig1 = eig1_res$eigval_full
        evs_eig1 = cbind(evs_eig1,ev_eig1)
        DD = vector()
        for (i in 1:length(D_Kernels)) {
            temp = (.Machine$double.eps+D_Kernels[[i]]) * (S+.Machine$double.eps)
            DD[i] = mean(apply(temp,MARGIN=2,FUN=sum))
        }
        alphaK0 = umkl(DD)
        alphaK0 = alphaK0 / sum(alphaK0)
        alphaK = (1-beta) * alphaK + beta * alphaK0
        alphaK = alphaK / sum(alphaK)
        fn1 = sum(ev_eig1[1:c])
        fn2 = sum(ev_eig1[1:(c+1)])
        converge[iter] = fn2 - fn1
        if (iter<10) {
            if (ev_eig1[length(ev_eig1)] > 0.000001) {
                lambda = 1.5 * lambda
                r = r / 1.01
            }
        }
        else {
            if(converge[iter]>converge[iter-1]) {
                S = S_old
                if(converge[iter-1] > 0.2) {
                    warning('Maybe you should set a larger value of c.')
                }
                break
            }
        }
        S_old = S
        
        # compute Kbeta
        distX = D_Kernels[[1]] * alphaK[1]
        for (i in 2:length(D_Kernels)) {
            distX = distX + as.matrix(D_Kernels[[i]]) * alphaK[i]
        }
        
        # sort distX for rows
        res = apply(distX,
            MARGIN = 1,
            FUN=function(x) return(sort(x,index.return = TRUE)))
        distX1 = array(0,c(nrow(distX),ncol(distX)))
        idx = array(0,c(nrow(distX),ncol(distX)))
        for(i in 1:nrow(distX)) {
            distX1[i,] = res[[i]]$x
            idx[i,] = res[[i]]$ix
        }
    }
    LF = F_eig1
    D = diag(apply(S,MARGIN=2,FUN=sum))
    L = D - S
    
    # compute the eigenvalues and eigenvectors of P
    eigen_L = eigen(L)
    U = eigen_L$vectors
    D = eigen_L$values
    
    if (length(no.dim)==1) {
        U_index = seq(ncol(U),(ncol(U)-no.dim+1))
        F_last = tsne(S,k=no.dim,initial_config=U[,U_index])
    }
    else {
        F_last = list()
        for (i in 1:length(no.dim)) {
            U_index = seq(ncol(U),(ncol(U)-no.dim[i]+1))
            F_last[i] = tsne(S,k=no.dim[i],initial_config=U[,U_index])
        }
    }
    
    # compute the execution time
    execution.time = proc.time() - ptm
    
    cat("Performing Kmeans.\n")
    y = kmeans(F_last,c,nstart=200)
    
    ydata = tsne(S)
    
    # create the structure with the results
    results = list()
    results[["y"]] = y
    results[["S"]] = S
    results[["F"]] = F_last
    results[["ydata"]] = ydata
    results[["alphaK"]] = alphaK
    results[["execution.time"]] = execution.time
    results[["converge"]] = converge
    results[["LF"]] = LF
    
    return(results)
    
}

Try the SIMLR package in your browser

Any scripts or data that you put into this service are public.

SIMLR documentation built on Nov. 8, 2020, 5:40 p.m.