Nothing
#' Compute the residual sum of squares error for an elastic net model
#' @param model The elastic net model
#' @param x The miRNA expression
#' @param y The gene expression
#'
#' @return the RSS
fn_get_rss <- function(model, x, y){
lambda.min <- model$lambda.min
#get coefficients (beta) of best model
model.pred <- predict(model, x, s=lambda.min)
model.rss <- sum((model.pred - y)^2)
model.rss <- model.rss / ncol(x)
return(model.rss)
}
#' Extract the model coefficients from an elastic net model
#' @param model An elastic net model
#' @import logging
#'
#' @return A data frame with miRNAs and coefficients
fn_get_model_coef <- function(model){
lambda.min <- model$lambda.min
model.coef <- coef(model, s=lambda.min)
#extract names of those miRNAs where the coefficient is != 0
#and remove intercept [-1]
logdebug(paste("Extracting miRNAs with non zero coefficient for gene", gene))
coefficients <- as.vector(model.coef)[-1]
mimats <- rownames(model.coef)[-1]
non.zero.model.coef <- which(coefficients != 0)
#check if any of the coefficients were non-zero
if(length(non.zero.model.coef)==0){
logwarn("no non-zero coefficients for this model")
return(NULL)
}
else{
coefficients <- coefficients[non.zero.model.coef]
mimats <- mimats[non.zero.model.coef]
data.frame(mirna=mimats, coefficient=coefficients)
}
}
#' Computes an elastic net model
#' @import foreach
#' @importFrom glmnet cv.glmnet
#' @param x miRNA expression matrix
#' @param y gene expression vector
#' @param alpha.step Step size for alpha, the tuning parameter for elastic net.
#'
#' @return The best model, i.e. the one for which the selected alpha yielded the
#' smallest residual sum of squares error
fn_elasticnet <- function(x, y, alpha.step = 0.1){
models <- foreach(alpha = seq(0, 1, alpha.step)) %do%{
tryCatch({
cv.glmnet(x, y, alpha = alpha)
}, warning = function(w){
logwarn(w)
return(NA)
}, error = function(e){
logerror(e)
return(NA)
})
}
models.cvm <- unlist(lapply(models, function(model){
min(model$cvm)
}))
#return model with smallest residual sum of squares
return(models[[which.min(models.cvm)]])
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.