Description Usage Arguments Value Source References Examples
Using some subset of the signatures listed in TBsignatures
and
specified scoring algorithms, this function runs gene signature profiling
on an input gene expression dataset. It allows for scores to be computed for
these signatures which can be compared using various visualization tools also
provided in the TBSignatureProfiler package.
1 2 3 4 5 6 7 8 9 10 11 12 |
input |
an input data object of the class |
useAssay |
a character string specifying the assay to use for signature
profiling when |
signatures |
a |
algorithm |
a vector of algorithms to run, or character string if only
one is desired. The default is |
combineSigAndAlgorithm |
logical, not supported if |
assignDir |
a character string naming a directory to save intermediate
ASSIGN results if |
outputFormat |
a character string specifying the output data format.
Possible values are |
parallel.sz |
an integer identifying the number of processors to use
when running the calculations in parallel for the GSVA and ssGSEA algorithms.
If |
ASSIGNiter |
an integer indicating the number of iterations to use in
the MCMC for the ASSIGN algorithm. The default is |
ASSIGNburnin |
an integer indicating the number of burn-in iterations
to use in the MCMC for the ASSIGN algorithm. These iterations are discarded
when computing the posterior means of the model parameters. The default is
|
A SummarizedExperiment
object, data.frame
, or
matrix
of signature profiling results. The returned object will be
of the format specified in outputFormat
.
If input
is a SummarizedExperiment
and
outputFormat = "SummarizedExperiment"
, then the output will retain
any input information stored in the input colData. In general, if
outputFormat = "SummarizedExperiment"
then columns in the colData
will include the scores for each desired signature with samples on the rows.
If input
is a data.frame
or matrix
, then the returned
object will have signatures on the rows and samples on the columns.
Profiling for the Z-Score, PLAGE, GSVA, ssGSEA algorithms are all
conducted with the Bioconductor GSVA
package. Profiling for the
singscore algorithm is conducted with the Bioconductor singscore
package.
Barbie, D.A., Tamayo, P., Boehm, J.S., Kim, S.Y., Moody, S.E., Dunn, I.F., Schinzel, A.C., Sandy, P., Meylan, E., Scholl, C., et al. (2009). Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108-112. doi: 10.1038/nature08460.
Foroutan, M. et al. (2018). Single sample scoring of molecular phenotypes. BMC Bioinformatics, 19. doi: 10.1186/s12859-018-2435-4.
Lee, E. et al. (2008). Inferring pathway activity toward precise disease classification. PLoS Comp Biol, 4(11):e1000217. doi: 10.1371/journal.pcbi.1000217
Shen, Y. et al. (2015). ASSIGN: context-specific genomic profiling of multiple heterogeneous biological pathways. Bioinformatics, 31, 1745-1753. doi: 10.1093/bioinformatics/btv031.
Subramanian, A. et al. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. PNAS, 102, 15545-15550. doi: 10.1073/pnas.0506580102.
Tomfohr, J. et al. (2005). Pathway level analysis of gene expression using singular value decomposition. BMC Bioinformatics, 6:225. doi: 10.1186/1471-2105-6-225
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | ## Using a data.frame input/output
# Create some toy data to test Zak_RISK_16 signature, using 5 samples with low
# expression & five samples with high expression of the signatures genes.
df_testdata <- as.data.frame(rbind(matrix(c(rnorm(80), rnorm(80) + 5), 16, 10,
dimnames = list(TBsignatures$Zak_RISK_16,
paste0("sample", seq_len(10)))),
matrix(rnorm(1000), 100, 10,
dimnames = list(paste0("gene", seq_len(100)),
paste0("sample", seq_len(10))))))
res <- runTBsigProfiler(input = df_testdata,
signatures = TBsignatures["Zak_RISK_16"],
algorithm = c("GSVA", "ssGSEA"),
combineSigAndAlgorithm = FALSE,
parallel.sz = 1)
subset(res, res$pathway == "Zak_RISK_16")
## Using a SummarizedExperiment input/output
# The TB_indian SummarizedExperiment data is included in the package.
GSVA_res <- runTBsigProfiler(input = TB_indian,
useAssay = "logcounts",
signatures = TBsignatures["Zak_RISK_16"],
algorithm = c("GSVA"),
combineSigAndAlgorithm = FALSE,
parallel.sz = 1)
GSVA_res$Zak_RISK_16
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.