Nothing
invoke_spline_prediction <- function(fits, x){
# Wrapper function for the function 'predict_spline'.
#
# Calls 'predict_spline' sequentially for each row in 'fits' and
# returns a data frame with all columns from 'fits' except of the
# fittedModel' column.
#
# The argument 'fits' is the output of 'tpptrFitSplines' and contains the
# fitted smoothing spline models in the column 'fittedModel'.
# Check for missing function arguments
checkFunctionArgs(match.call(), c("fits", "x"))
if (! "fittedModel" %in% colnames(fits)){
stop("'fits' must contain a column called 'fittedModel'")
}
predictions <- fits %>%
rowwise() %>% # each row contains one model and will be processed sequentially
do({
rowContents <- .
## Predict values:
res <- predict_spline(splineModel = rowContents$fittedModel, x = x)
# Add information about grouping variables. This information was lost
# when invoking the prediction after rowwise grouping:
otherCols <- rowContents %>% inset2("fittedModel", NULL) %>% data.frame()
out <- cbind(res, otherCols)
}) %>%
ungroup
# replace NAs in color column by entry 'nullModel' for null models
allModels <- fits %>% extract2("fittedModel")
fitFactors <- allModels %>%
purrr::map(function(m) {
if (inherits(m, "lm")){
return(extract_fit_factors(m, mode = "names")) #return(colnames(extract_fit_factors(m)))
} else {
return(c())
}
}) %>%
unlist %>% unique
isNullModel <- predictions$testHypothesis == "null"
for (factorTmp in fitFactors){
isNAValue <- is.na(predictions[[factorTmp]])
predictions[which(isNAValue & isNullModel), factorTmp] <- "null model"
}
return(predictions)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.