Nothing
#' @title Analyze spline fits to detect differential behavior over time
#'
#' @description Analyze fitted natural spline models and look for
#' differential behaviour between conditions by a moderated F-test.
#'
#' @return A long table containing the hypothesis test results per protein.
#'
#' @examples
#' data(hdacTR_smallExample)
#' tpptrData <- tpptrImport(configTable = hdacTR_config, data = hdacTR_data)
#' normResults <- tpptrNormalize(data = tpptrData, normReqs = tpptrDefaultNormReqs())
#' normData_eSets <- normResults$normData
#' fitData <- tpptrTidyUpESets(normData_eSets)
#' fits <- tpptrFitSplines(data = fitData, factorsH1 = "condition", nCores = 1, splineDF = 4:5)
#' testResults <- tpptrFTest(fittedModels = fits)
#'
#' @param fittedModels a table of fitted spline models (produced by \code{tpptrFitSplines}).
#' @param doPlot boolean value indicating whether QC plots should be produced.
#' Currently, QC plots comprise distributions of the F statistics, and the
#' p-values before/ after Benjamini Hochberg adjustment.
#' @param resultPath location where to store QC plots, if \code{doPlot} = TRUE.
#'
#' @details If \code{doPlot} is \code{TRUE}, but no \code{resultPath} is
#' specified, the plots will be prompted to the active device.
#'
#' The moderated F-statistic is calculated by the following equation:
#' ...
#'
#' @seealso \code{\link{ns}, \link{squeezeVar}}
#' @export
tpptrFTest <- function(fittedModels, doPlot = FALSE, resultPath = NULL){
## Initialize variables to prevent "no visible binding for global
## variable" NOTE by R CMD check:
testHypothesis = rssH0 = rssH1 = nObsH1 = nCoeffsH1 = sigmaH1 =
residual_df_H1 = posterior_var_H1 = nCoeffsH0 = df2 = prior_df_H1 =
F_moderated = df1 = F_scaled = df2_moderated = p_NPARC = uniqueID =
F_statistic = p_adj_NPARC = staType = staValue <- NULL
if (!("uniqueID" %in% colnames(fittedModels)))
stop("'fittedModels' must contain a column called 'uniqueID'")
## Create wide table of goodness of fit statistics
## (not the most elegant solution, but spread only works for single column)
fitStatsH0 <- fittedModels %>% filter(testHypothesis == "null") %>%
mutate(fittedModel = NULL) %>% # remove column "fittedModel", if it exists at all
select( -testHypothesis)
fitStatsH1 <- fittedModels %>% filter(testHypothesis == "alternative") %>%
mutate(fittedModel = NULL) %>% # remove column "fittedModel", if it exists at all
select( -testHypothesis)
fitStatsBothModels <- full_join(fitStatsH0, fitStatsH1, by = "uniqueID",
suffix = c("H0", "H1"))
testResults <- fitStatsBothModels %>%
ungroup %>%
# Compute ordinary F-statistic as suggested by Storey et al. 2005:
mutate(F_statistic = (rssH0-rssH1)/rssH1) %>%
# Compute moderated F-statistic:
mutate(residual_df_H1 = nObsH1-nCoeffsH1,
posterior_var_H1 = squeezeVar(sigmaH1^2, residual_df_H1)$var.post,
prior_df_H1 = squeezeVar(sigmaH1^2, residual_df_H1)$df.prior,
F_moderated = (rssH0-rssH1)/posterior_var_H1) %>%
# Compute p-vals using F-distribution (requires scaling of mod. F-statistic,
# see Smyth (2004) p. 14 for details):
mutate(df1 = nCoeffsH1-nCoeffsH0, # numerator degrees of freedom
df2 = (nObsH1-nCoeffsH1), # denominator degrees of freedom
df2_moderated = df2 + prior_df_H1, # adjustment by adding prior estimator
F_scaled = F_moderated*(1/df1), # scale moderated F-statistic
p_NPARC = 1-suppressWarnings(pf(F_scaled, df1, df2_moderated)), # calculate p-val. Suppress warnings due to NAs
p_adj_NPARC = p.adjust(p_NPARC, method = "fdr")) %>% # Benjamini-Hochberg correction
# Select relevant columns (remove values already contained in input table)
select(uniqueID, F_statistic, F_moderated, F_scaled, residual_df_H1,
prior_df_H1, df1, df2, df2_moderated, posterior_var_H1,
p_NPARC, p_adj_NPARC)
if (doPlot){
if(!is.null(resultPath)){
pdf(file = file.path(resultPath, "QCplots_fTest.pdf"), width=8, height=9)
}
message("Creating QC plots to visualize test statistics and p-values")
# Plot distributions of F-statistics
plotList <- testResults %>% na.omit %>%
gather(staType, staValue, c(F_statistic, F_moderated, F_scaled)) %>%
mutate(staType = factor(staType)) %>%
group_by(staType) %>%
do(plotObj = plot_fSta_distribution(dataLong = .))
print(plotList$plotObj)
# Plot distributions of p-values and adjusted p-values
plotList <- testResults %>% na.omit %>%
group_by(df1, df2, df2_moderated) %>%
do(plotObj = plot_pVal_distribution(dataWide = .))
print(plotList$plotObj)
if(!is.null(resultPath)) dev.off()
message("done.\n")
}
return(testResults)
## to do: shift QC plots to an extra function 'tpptrFTestQCplots' and deprecate the doPlot and resultPath arguments
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.