linearRegr: linearRegr

Description Usage Arguments Value Examples

View source: R/linearRegr.R

Description

Creates a linear model between a mRNA or miRNA of choice and a selection of it's filtered binding partners. The model is based on the users design.

Usage

1
linearRegr(mreg, colselect, colpair, alterpairs)

Arguments

mreg

Matrix generated from the multiReg function. This should be found as an assay within the MAE used during the multiReg function.

colselect

Column from mreg which contain the gene of interest. Default is 2.

colpair

Column of binding parter of the gene of interest. Default is 3. If NANs are found, test alternative formulas.

alterpairs

Column(s) of other binding partners of the gene of interest. This can include any numer of columns. If NANs are found, test alternative formulas. e.g. = 4:7, c(4, 6, 8), 4.

Value

A linear regression model which represents miRNA-mRNA interaction(s) which can be further explored.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
library(org.Mm.eg.db)

miR <- mm_miR[1:100,]

mRNA <- mm_mRNA[1:200,]

MAE <- startObject(miR = miR, mRNA = mRNA)

MAE <- getIdsMir(MAE, assay(MAE, 1), orgDB = org.Mm.eg.db, 'mmu')

MAE <- getIdsMrna(MAE, assay(MAE, 2), "useast", 'mmusculus')


MAE <- diffExpressRes(MAE, df = assay(MAE, 1), dataType = 'Log2FC',
                     genes_ID = assay(MAE, 3),
                      idColumn = 'GENENAME',
                      name = "miRNA_log2fc")

MAE <- diffExpressRes(MAE, df = assay(MAE, 2), dataType = 'Log2FC',
                     genes_ID = assay(MAE, 7),
                     idColumn = 'GENENAME',
                     name = "mRNA_log2fc")

Filt_df <- data.frame(row.names = c("mmu-miR-145a-3p:Adamts15",
                                   "mmu-miR-146a-5p:Acy1"),
                     corr = c(-0.9191653, 0.7826041),
                     miR = c("mmu-miR-145a-3p", "mmu-miR-146a-5p"),
                     mRNA = c("Adamts15", "Acy1"),
                     miR_Entrez = c(387163, NA),
                     mRNA_Entrez = c(235130, 109652),
                     TargetScan = c(1, 0),
                     miRDB = c(0, 0),
                     Predicted_Interactions = c(1, 0),
                     miRTarBase = c(0, 1),
                     Pred_Fun = c(1, 1))

MAE <- matrixFilter(MAE, miningMatrix = Filt_df, negativeOnly = FALSE,
                   threshold = 1, predictedOnly = FALSE)

MAE <- multiReg(MAE = MAE, gene_interest = "Adamts15",
                mRNAreg =TRUE, filt_df=MAE[[11]], miRNA_exp=MAE[[9]],
                mRNA_exp=MAE[[10]])

model1 <- linearRegr(mreg = MAE[[12]], colselect =2, colpair =3)
summary(model1$regression)

TimiRGeN documentation built on April 17, 2021, 6:03 p.m.