quickDMap: quickDMap

Description Usage Arguments Value Examples

View source: R/quickDMap.R

Description

Creates a companion heatmap for the dendrogram made by quickDendro.

Usage

1
2
quickDMap(filt_df, miRNA_exp, mRNA_exp, distmeth, hclustmeth,
pathwayname)

Arguments

filt_df

Dataframe from the matrixFilter function.

miRNA_exp

miRNA data from using the diffExpressRes function on miRNA data.

mRNA_exp

mRNA data from using the diffExpressRes function on miRNA data.

distmeth

Dist method for hierarchical clustering. Default is "maximum".

hclustmeth

Hclust method for hierarchical clustering. Default is "ward.D".

pathwayname

Character which is the name of pathway of interest. Default is "Pathway".

Value

A heatmap with time points as the x axis and genes as the y axis. Gene order will be the same as quickDendro.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
library(org.Mm.eg.db)
miR <- mm_miR[1:100,]
mRNA <- mm_mRNA[1:200,]

MAE <- startObject(miR = miR, mRNA = mRNA)

MAE <- getIdsMir(MAE, assay(MAE, 1), orgDB = org.Mm.eg.db, 'mmu')
MAE <- getIdsMrna(MAE, assay(MAE, 2), "useast", 'mmusculus')

MAE <- diffExpressRes(MAE, df = assay(MAE, 1), dataType = 'Log2FC',
                     genes_ID = assay(MAE, 3),
                      idColumn = 'GENENAME',
                      name = "miRNA_log2fc")

MAE <- diffExpressRes(MAE, df = assay(MAE, 2), dataType = 'Log2FC',
                     genes_ID = assay(MAE, 7),
                     idColumn = 'GENENAME',
                     name = "mRNA_log2fc")

Filt_df <- data.frame(row.names = c("mmu-miR-145a-3p:Adamts15",
                                   "mmu-miR-146a-5p:Acy1"),
                     corr = c(-0.9191653, 0.7826041),
                     miR = c("mmu-miR-145a-3p", "mmu-miR-146a-5p"),
                     mRNA = c("Adamts15", "Acy1"),
                     miR_Entrez = c(387163, NA),
                     mRNA_Entrez = c(235130, 109652),
                     TargetScan = c(1, 0),
                     miRDB = c(0, 0),
                     Predicted_Interactions = c(1, 0),
                     miRTarBase = c(0, 1),
                     Pred_Fun = c(1, 1))

MAE <- matrixFilter(MAE, miningMatrix = Filt_df, negativeOnly = FALSE,
                   threshold = 1, predictedOnly = FALSE)

quickDendro(filt_df=MAE[[11]], miRNA_exp=MAE[[9]],
            mRNA_exp=MAE[[10]], pathwayname = "Test")

quickDMap(filt_df=MAE[[11]], miRNA_exp=MAE[[9]],
          mRNA_exp=MAE[[10]], pathwayname = "Test")

TimiRGeN documentation built on April 17, 2021, 6:03 p.m.