quickTC: quickTC

Description Usage Arguments Value Examples

View source: R/quickTC.R

Description

Plots miRNA:mRNA pair over timecourse.

Usage

1
2
quickTC(filt_df, pair, miRNA_exp, mRNA_exp, scale,Interpolation,
timecourse)

Arguments

filt_df

Dataframe from the matrixFilter function.

pair

Interger representing the pair to be explored.

miRNA_exp

miRNA data from using the diffExpressRes function on miRNA data.

mRNA_exp

mRNA data from using the diffExpressRes function on miRNA data

scale

TRUE or FALSE. Should data be scales. Default is FALSE.

Interpolation

TRUE or FALSE. Should the whole time course be interpolated over by a smooth spline? Default is FALSE. This is most useful for longer time courses.

timecourse

If Iterpolation is TRUE, how many time points should be interpolated over?

Value

Time course plot of selected pair.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
library(org.Mm.eg.db)

miR <- mm_miR[1:100,]

mRNA <- mm_mRNA[1:200,]

MAE <- startObject(miR = miR, mRNA = mRNA)

MAE <- getIdsMir(MAE, assay(MAE, 1), orgDB = org.Mm.eg.db, 'mmu')

MAE <- getIdsMrna(MAE, assay(MAE, 2), "useast", 'mmusculus')

MAE <- diffExpressRes(MAE, df = assay(MAE, 1), dataType = 'Log2FC',
                     genes_ID = assay(MAE, 3),
                      idColumn = 'GENENAME',
                      name = "miRNA_log2fc")

MAE <- diffExpressRes(MAE, df = assay(MAE, 2), dataType = 'Log2FC',
                     genes_ID = assay(MAE, 7),
                     idColumn = 'GENENAME',
                     name = "mRNA_log2fc")

Filt_df <- data.frame(row.names = c("mmu-miR-145a-3p:Adamts15",
                                   "mmu-miR-146a-5p:Acy1"),
                     corr = c(-0.9191653, 0.7826041),
                     miR = c("mmu-miR-145a-3p", "mmu-miR-146a-5p"),
                     mRNA = c("Adamts15", "Acy1"),
                     miR_Entrez = c(387163, NA),
                     mRNA_Entrez = c(235130, 109652),
                     TargetScan = c(1, 0),
                     miRDB = c(0, 0),
                     Predicted_Interactions = c(1, 0),
                     miRTarBase = c(0, 1),
                     Pred_Fun = c(1, 1))

MAE <- matrixFilter(MAE, miningMatrix = Filt_df, negativeOnly = FALSE,
                   threshold = 1, predictedOnly = FALSE)

quickTC(filt_df=MAE[[11]], pair=1, miRNA_exp=MAE[[9]],
        mRNA_exp=MAE[[10]], scale = FALSE)

TimiRGeN documentation built on April 17, 2021, 6:03 p.m.