Description Usage Arguments Value Examples
quickReg will produce a regression plot between a miRNA:mRNA pair. An abline wil be generated. Odds-ratio will be calculated from the coefficient. Confident intervals at 95 coefficient also. This is a useful method to identify the relationship between a miRNA:mRNA pair over time. The higher the odds-ratio the greater the correlation between the two time series. The smaller the 95 intervals range, the more confident we can be about plotting the abline.
1 | quickReg(reg_df, colselect)
|
reg_df |
Matrix/assay which which was generated by the multiReg function. Should be in the MAE used during the multiReg function. |
colselect |
Integer which represents a column within reg_df containing mRNA/ miRNA which the gene of interest (column 2) is to be contrasted agianst. |
Regression plot between a miRNA:mRNA pair.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | library(org.Mm.eg.db)
miR <- mm_miR[1:100,]
mRNA <- mm_mRNA[1:200,]
MAE <- startObject(miR = miR, mRNA = mRNA)
MAE <- getIdsMir(MAE, assay(MAE, 1), orgDB = org.Mm.eg.db, 'mmu')
MAE <- getIdsMrna(MAE, assay(MAE, 2), "useast", 'mmusculus')
MAE <- diffExpressRes(MAE, df = assay(MAE, 1), dataType = 'Log2FC',
genes_ID = assay(MAE, 3),
idColumn = 'GENENAME',
name = "miRNA_log2fc")
MAE <- diffExpressRes(MAE, df = assay(MAE, 2), dataType = 'Log2FC',
genes_ID = assay(MAE, 7),
idColumn = 'GENENAME',
name = "mRNA_log2fc")
Filt_df <- data.frame(row.names = c("mmu-miR-145a-3p:Adamts15",
"mmu-miR-146a-5p:Acy1"),
corr = c(-0.9191653, 0.7826041),
miR = c("mmu-miR-145a-3p", "mmu-miR-146a-5p"),
mRNA = c("Adamts15", "Acy1"),
miR_Entrez = c(387163, NA),
mRNA_Entrez = c(235130, 109652),
TargetScan = c(1, 0),
miRDB = c(0, 0),
Predicted_Interactions = c(1, 0),
miRTarBase = c(0, 1),
Pred_Fun = c(1, 1))
MAE <- matrixFilter(MAE, miningMatrix = Filt_df, negativeOnly = FALSE,
threshold = 1, predictedOnly = FALSE)
MAE <- multiReg(MAE = MAE, gene_interest = "Adamts15",
mRNAreg =TRUE, filt_df=MAE[[11]], miRNA_exp=MAE[[9]],
mRNA_exp=MAE[[10]])
model1 <- linearRegr(mreg = MAE[[12]], colselect =2, colpair =3)
summary(model1$regression)
quickReg(reg_df = MAE[[12]], colselect = 3)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.